Author Archive

Why we fly: Revolutionizing wheat phenotyping with drones

By Cally Arthur, Cornell University

CIUDAD OBREGÓN, MEXICO Ravi Singh compares plots of wheat lines growing in the fields of Obregón to determine which lines have potential as new varieties. Relying on reams of statistical breeding data and an experienced eye, the head of bread wheat improvement at the International Maize and Wheat Improvement Center (CIMMYT) evaluates plants for resistance to rusts and other diseases, height, tillering ability, grain fill or the mass and size of the spikes, and general vigor or robustness. After detailed evaluation, the fate of the plant is determined: it is selected for advancement and harvested for seed for a yield trial, or it is passed over. With his team, Singh surveys tens of thousands of small wheat plots each season.

Activating the gene power in seeds to boost wheat’s climate resilience

As part of varied approaches at the International Maize and Wheat Improvement Center (CIMMYT) to unleash the power of wheat biodiversity, researchers from India and Mexico have been mobilizing native diversity from ancestral versions of wheat and related grasses to heighten the crop’s resilience to dryness and heat—conditions that have held back wheat yields for several decades and will worsen as earth’s climate changes. Now their results are beginning to reach breeders worldwide.

Strengthening African women’s participation in wheat farming

By Dina Najjar, ICARDA

Gender inequality is a recurring feature of many agricultural production systems across the wheat-growing regions of Africa, and women farmers often lack access to credit, land, and other inputs. The result: limited adoption of new innovations, low productivity and income, and a missed opportunity to enhance household food security and prosperity.

International experts train scientists to fight deadly wheat disease in South Asia

Protective gear minimizes the chances of transferring infectious spores. Photo by Chris Knight, IP-CALS, Cornell.

By Samantha Hautea/ February 17,2017

DINAJPUR, BANGLADESH- Wheat blast, a devastating fungal disease that appeared in South Asia for the first time in 2016, was the focus of a surveillance workshop in Bangladesh where international experts trained 40 top wheat pathologists, breeders, and agronomists from Bangladesh, India and Nepal.

The two-week program, “Taking action to mitigate the threat of wheat blast in South Asia: Disease surveillance and monitoring skills training,” was held at the Bangladesh Agricultural Research Institute (BARI) Wheat Research Center (WRC) in Dinajpur, Bangladesh, February 4-16, 2017.

Wheat researchers from BARI, Cornell University, the International Maize and Wheat Improvement Center (CIMMYT), Kansas State University (KSU), and the Bangladesh Agricultural University (BAU) led the workshop, training participants to recognize, monitor, and control wheat blast.

Click here to read more.

Scientists in Afghanistan set new program to raise wheat harvests

February 17, 2017

KABUL (CIMMYT)-  Inadequate access to new disease-resistant varieties and short supplies of certified seed are holding back wheat output and contributing to rising food insecurity in Afghanistan, according to more than 50 national and international wheat experts.

Wheat scientists and policymakers discussed challenges to the country’s most-produced crop during a two-day meeting at Agricultural Research Institute of Afghanistan (ARIA) headquarters in Kabul, as part of the 5th Annual Wheat Researchers’ Workshop in November 2016. They took stock of constraints to the 2017 winter wheat crop, including dry autumn weather and rapidly-evolving strains of the deadly wheat disease known as yellow rust.

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

EL BATAN, Mexico (CIMMYT)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.

Cornell receives UK support to aid scientists fighting threats to global wheat supply

ITHACA, NY- Cornell University will receive $10.5 million in UK aid investment from the British people to help an international consortium of plant breeders, pathologists and surveillance experts overcome diseases hindering global food security efforts.

The funds for the four-year Delivering Genetic Gain in Wheat, or DGGW, project will build on a $24 million grant from the Bill & Melinda Gates Foundation, announced in March 2016, and bring the total to $34.5 million.

Harnessing medical technology and global partnerships to drive gains in food crop productivity

EL BATÁN, Mexico (CIMMYT)-  Global research networks must overcome nationalist and protectionist tendencies to provide technology advances the world urgently needs, said a leading German scientist at a recent gathering in Mexico of 200 agricultural experts from more than 20 countries.

“Agriculture’s critical challenges of providing food security and better nutrition in the face of climate change can only be met through global communities that share knowledge and outputs; looking inward will not lead to results,” said Ulrich Schurr, director of the Institute of Bio- and Geosciences of the Forschungszentrum Jülich research center, speaking at the 4th International Plant Phenotyping Symposium

One such community is the International Plant Phenotyping Network(IPPN), chaired by Schurr and co-host of the symposium in December, with the Mexico-based International Maize and Wheat Improvement Center, known by its Spanish acronym, CIMMYT.

2nd call for proposals from the International Wheat Yield Partnership

The International Wheat Yield Partnership (IWYP) is initiating its Second Competitive Funding Call by inviting creative, forward-looking proposals that seek to discover resilient and sustainable approaches to substantially increase the genetic yield potential of wheat, as defined by grain yield under the absence of stress, for the benefit of developed and developing countries. It is anticipated that wheat yield potential can be enhanced by:

  • Increasing carbon capture before floweringiwyp
  • Increasing biomass
  • Optimizing harvest index
  • Enhancing photosynthetic pathways
  • Specific changes in plant architecture
  • Modifying phenology, e.g., flowering time
  • Hybrid wheat system development
  • Root structure and growth
  • Faster / alternative breeding methods
  • Modeling to define best traits per environment

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

by Mike Listman / November 29, 2016

ths

The Turbo Happy Seeder allows farmers to sow a rotation crop directly into the residues of a previous crop—in this case, wheat seed into rice straw—without plowing, a practice that raises yields, saves costs and promotes healthier soil and cleaner air.

Recent media reports show that the 19 million inhabitants of New Delhi are under siege from a noxious haze generated by traffic, industries, cooking fires and the burning of over 30 million tons of rice straw on farms in the neighboring states of Haryana and Punjab.

However, farmers who rotate wheat and rice crops in their fields and deploy a sustainable agricultural technique known as “zero tillage” can make a significant contribution to reducing smog in India’s capital, helping urban dwellers breathe more easily.

Since the 1990s, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been working with national partners and advanced research institutes in India to test and promote reduced tillage which allows rice-wheat farmers of South Asia to save money, better steward their soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

The key innovation involves sowing wheat seed directly into untilled soil and rice residues in a single tractor pass, a method known as zero tillage. Originally deemed foolish by many farmers and researchers, the practice or its adaptations slowly caught on and by 2008 were being used to sow wheat by farmers on some 1.8 million hectares in India.

Click here to read more about how scientists and policymakers are promoting the technique as a key alternative for residue burning and to help clear Delhi’s deadly seasonal smog.