Posts Tagged ‘CGIAR Research Program on Wheat’

A new Deputy Director General for ICARDA

As of 29 April, Dr. Jacques Wery, Professor of Agronomy and Agricultural Systems of the University of Montpellier, will begin serving as Deputy Director General for Research for ICARDA. In his new role, he will provide scientific and managerial leadership in setting priorities, planning, implementing, and monitoring a cohesive research agenda aligned with ICARDA’s strategic direction and results framework.

Click here to read the full announcement on the ICARDA web page.

 

Scientists confirm value of whole grains and wheat for nutrition and health

15 February 2018

New study squashes claims that gluten and wheat are bad for human health. Photo: CIMMYT/ Mike Listman

Based on a recent, special compilation of 12 reports published in the scientific journal Cereal Foods World during 2014-2017, eating whole grains is actually beneficial for brain health and associated with reduced risk of diverse types of cancer, coronary disease, diabetes, hypertension, obesity and overall mortality.EL BATAN, Mexico (CIMMYT) – A new, exhaustive review of recent scientific studies on cereal grains and health has shown that gluten- or wheat-free diets are not inherently healthier for the general populace and may actually put individuals at risk of dietary deficiencies.

“Clear and solid data show that eating whole-grain wheat products as part of a balanced diet improves health and can help maintain a healthy body weight, apart from the 1 percent of people who suffer from celiac disease and another 2 to 3 percent who are sensitive to wheat,” said Carlos Guzmán, wheat nutrition and quality specialist at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), which produced the compilation.

Guzmán said wheat and other grains are inexpensive sources of energy that also provide protein, digestible fiber, minerals, vitamins, and other beneficial phytochemicals.

“Among wheat’s greatest benefits, according to the research, is fiber from the bran and other grain parts,” he explained. “Diets in industrialized countries are generally deficient in such fiber, which helps to regulate digestion and promote the growth of beneficial gut bacteria.”

Guzmán and hundreds of other grain quality and health specialists will meet for the 4th Latin American Cereals Conference and the 13th International Gluten Workshop, organized jointly by CIMMYT and the International Association for Cereal Science and Technology (ICC) in Mexico City from 11 to 17 March 2018.

Contributing to humankind’s development for the last 10,000 years, wheat is cultivated on some 220 million hectares (539 million acres) worldwide. The crop accounts for a fifth of the world’s food and is the main source of protein in many developing and developed countries, and second only to rice as a source of calories globally. In the many countries where milling flours are fortified, wheat-based foods provide necessary levels of essential micronutrients such as iron, zinc, folic acid and vitamin A.

Inhabitants in developing and industrialized countries are experiencing higher incidences of diabetes, allergies, inflammatory bowel disorder, and obesity. A profitable industry has developed around gluten- and wheat-free food products, which the popular press has promoted as beneficial for addressing such disorders. But much scientific evidence contradicts popular writings about these food products.

“Much of the anti-grain messaging comes from publications produced by supposed ‘specialists’ who are not nutritionists, and are often built on faulty premises.” according to Julie Miller Jones, Distinguished Scholar and Professor Emerita at St. Catherine University, U.S.A., and a key contributor to the review studies in the compilation.

“Causes of obesity and chronic disease are complex, and it is not only simplistic but erroneous to name a single food group as the cause or the cure for these problems,” Miller Jones explained.  “We do know that we consume large portions, too many calories, and too few fruits, vegetables, or whole grains.  Instead today’s lifestyles encourage consumption of many high calorie foods and beverages that contain few nutrients. Then the risks of poor diets are often amplified by our sedentary lifestyles.”

CIMMYT scientists are concerned that the negative portrayal of wheat to promote the lucrative gluten-free fad diet industry will discourage low-income families from consuming the grain as part of an affordable and healthy diet, particularly in areas where there are few low-cost alternatives.

Consumer Reports magazine reported in January 2015 that sales of “gluten-free” products soared 63 percent between 2012 and 2015, with almost 4,600 products introduced in 2014 alone. Retail sales of gluten-free foods in the United States were estimated at $12.2 billion in 2014 and by 2020 the market is projected to be valued at $23.9 billion, Statistica reports.

However, wheat biofortified through breeding or fortified during milling with zinc and iron can play a vital role in diets in areas where “hidden hunger” is a concern and where nutritional options are unaffordable or unavailable. About 2 billion people worldwide suffer from hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The compilation draws on more than 1,500 peer-reviewed studies regarding the dietary and health effects of eating cereals and wheat-based foods.

CIMMYT specialists also worry that misinformation about wheat might affect investments in vital research to sustain wheat production increases of at least 60 percent by 2050, the output required to keep pace with rising population and demand, according to Hans Braun, director of the center’s global wheat program.

“Climate change is already constraining wheat production in regions such as South Asia, where more than 500 million inhabitants eat wheat-based foods,” Braun said. “Worldwide, the crop is threatened by deadly pest and disease strains, water shortages, and depleted soils.”

“As we have seen in 2008, 2011, and just recently in Tunisia and Sudan, grain shortages or price hikes in bread can lead to social unrest,” Braun added. “The international community needs to speed efforts to develop and share high-yielding, climate-resilient, and disease-resistant wheat varieties that also meet humanity’s varied nutritional demands.”

The compilation was produced with special permission from AACC International.

Deadly strain of wheat stem rust disease surfaces in Europe

Scientists have shown that the first appearance of wheat stem rust disease in the U.K. in nearly 60 years, which occurred in 2013, was caused by the same virulent fungal strain responsible for recent wheat stem rust outbreaks in Ethiopia, Denmark, Germany, and Sweden.

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops. Photo: CIMMYT/Petr Kosina

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed
to the gods to avoid disease outbreaks on their wheat crops.
Photo: CIMMYT/Petr Kosina

As reported today in Communications Biology, an international team of researchers led by the John Innes Centre, U.K., found that 80 percent of U.K. wheat varieties are susceptible to the deadly stem rust strain. The group also confirmed for the first time in many decades that the stem rust fungus was growing on barberry bush, the pathogen’s alternate host, in the UK.

“This signals the rising threat of stem rust disease for wheat and barley production in Europe,” said Dave Hodson, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author on the study.

A scourge of wheat since biblical times, stem rust caused major losses to North American wheat crops in the early 20th century. Stem rust disease was controlled for decades through the use of resistant wheat varieties bred in the 1950s by scientist Norman Borlaug and his colleagues. Widespread adoption of those varieties sparked the Green Revolution of the 1960s and 70s.

In 1999 a new, highly-virulent strain of the stem rust fungus emerged in eastern Africa. Spores of that strain and variants have spread rapidly and are threatening or overcoming the genetic resistance of many currently sown wheat varieties. Scientists worldwide joined forces in the early 2000s to develop new, resistant varieties and to monitor and control outbreaks of stem rust and yellow rust, as part of collaborations such as the Borlaug Global Rust Initiative led by Cornell University.

Barberry is a shrub found throughout the temperate and subtropical regions. Photo: CIMMYT archives

Barberry is a shrub found throughout
the temperate and subtropical regions.
Photo: John Innes Centre

The Communications Biology study shows that 2013 U.K. stem rust strain is related to TKTTF, a fungal race first detected in Turkey that spread across the Middle East and recently into Europe. It was the dominant race in the 2013 stem rust outbreak in Germany and infected 10,000 hectares of wheat in Ethiopia’s breadbasket the same year.

Because disease organisms mutate quickly to overcome crop resistance controlled by single genes, researchers are rushing to identify new resistance genes and to incorporate multiple genes into high-yielding varieties, according to Ravi Singh, CIMMYT wheat scientist who participated in the reported study.

“The greatest hope for achieving durable resistance to rust diseases is to make wheat’s resistance genetically complex, combining several genes and resistance mechanisms,” Singh explained.

Barberry, which serves as a spawning ground for the stem rust fungus, was largely eradicated from the U.K. and U.S. last century, greatly reducing the spread and genetic diversification of rust disease races. Now barberry is being grown again in the U.K. over the last decade, according to Diane G.O. Saunders, John Innes Centre scientist and co-author of the study.

“The late Nobel laureate Norman Borlaug said that the greatest ally of the pathogen is our short memory,” Saunders stated. “We recommend continued, intensive resistance breeding. We would also welcome work with conservationists of endangered, barberry-dependent insect species to ensure that planting of common barberry occurs away from arable land, thus safeguarding European cereals from a large-scale re-emergence of wheat stem rust.”

Click here to read the John Innes Centre media release about the Communications Biology report and view the report.

Goat grass gives wheat breeders an edge

31 January 2018
by Laura Strugnell

A commentary published on 30 January in the leading science journal Nature Plants highlights the importance of an ancient grass species for wheat breeding. The commentary was sparked by the recent publication of a reference genome from Aegilops tauschii, also called goat grass.

Bread wheat was created some 10,000 years ago by a natural cross of more simple, primitive wheats with a sub-species of goat grass. As such, goat grass genes constitute a major component of the very large wheat genome. The sequencing of goat grass DNA opens the way for wheat breeders to apply a number of advanced approaches to improve the speed and precision of wheat breeding for important traits that may be found in the goat grass segment of the wheat genome.

The International Maize and Wheat Improvement Center (CIMMYT) and the International Centre for Agricultural Research in the Dry Areas (ICARDA) have produced many wheat x grass crosses, recreating the original, natural cross but using other goat grass species and thus greatly expanding wheat’s diversity. Wheat lines derived from those crosses have since been used in breeding programs worldwide and have helped farmers to boost yields by up to 20 percent. Goat grass is known for being highly adaptable and disease tolerant, so the crosses endow wheat with similar qualities. Varieties from these crosses make up over 30 percent of international seed stores.

Researchers expect that the sequencing of this grass species’ DNA will facilitate advanced approaches such as “speed breeding” – a technique that uses controlled variables to achieve up to seven rounds of wheat crops in one year. This will help allow wheat breeding to keep up with the rising global demand for the crop and to address the challenges of new, virulent diseases and more extreme weather.

Read the Nature Plants article: The goat grass genome’s role in wheat improvement. 2018. Rasheed, A., Ogbonnaya, F.C., Lagudah, E., Appels, R., He, Z. In: Nature Plants.

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver over 3,400 tons of high quality seed to farmers, which was sown on more than 100,300 hectares.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Photo: Atlabtamu/CIMMYT.

Usman Kadir. Photos here and above: CIMMYT/A.Habtamu.

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates FoundationEthiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

Heat tolerant varieties for durum wheat farmers in Africa

Using non-GM molecular breeding techniques, ICARDA’s scientists developed a set of durum wheat varieties that can withstand up to 40°C heat along the Senegal River basin. If scaled up, the technology offers potential to fight hunger and help farmers adapt to rising temperatures.

Click here to read the report on the ICARDA web page.

Now available: 2016-17 Annual Report of the International Wheat Yield Partnership

Wheat breeding lines from the IWYP Hub at CIMMYT are out-yielding local checks in tests, validating the strategy of combining high biomass individuals with those that feature better grain filling attributes. The lines are being sent to public and private breeding programs worldwide. Read more about this and other exciting IWYP activities and outputs:

Annual Report

John R. Porter becomes chairperson of the Independent Steering Committee for global wheat research

EL BATAN, Mexico (8 November 2017) – Professor Dr. John R. Porter, from the Agropolis/Montpellier Supagro/INRA/CIRAD conglomeration in Montpellier, France, has been elected as Chair of the Independent Steering Committee that advises the CGIAR Research Program on Wheat (known as WHEAT) on research strategy, priorities and program management. In this appointment, Porter succeeds Dr Tony Fischer, Honorary Research Fellow, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia.

An internationally recognized researcher and teacher in crop ecology and physiology, biological modelling, and agricultural ecology, Porter’s contributions have focused on climate change, agronomy, and ecosystem services.

“I am very proud and pleased to be elected as chair of the WHEAT Steering Committee. This CGIAR research program connects over 300 partners into a global alliance for climate-resilient and profitable wheat agri-food systems,” Porter said.

“Accounting for a fifth of the world’s food, wheat is the main source of protein in the developing world and is second only to rice as a source of calories for consumers there,” Porter explained. “The challenge for WHEAT is no less than to raise the crop’s productivity and keep wheat affordable for today’s 2.5 billion resource-poor consumers in 89 countries and for a world population that will surpass 9 billion around mid-century.”

Porter observed that this must be done while cutting greenhouse gas emissions and improving soil health, in wheat-based cropping systems. “As WHEAT moves into its 2nd Phase,” he said, “I would like the Independent Steering Committee to continue the work pioneered by my predecessor Tony Fischer and look at some new areas, such as human capacity development and innovation in wheat-based food production systems.”

Meeting wheat demand, protecting food and farming from worsening climate impacts
According to Porter, WHEAT is actively catalyzing the efforts of CGIAR and partner institution scientists, farmers, governments and private companies in lower and middle-income countries, to develop and share climate-smart innovations that increase farm resilience and productivity, while reducing the climate footprint.

Technology such as high-yielding wheat varieties that tolerate drought and high temperatures, as well as resisting new or modified strains of deadly crop diseases spawned in rapidly warming environments, are the outputs from WHEAT research that lead to positive outcomes for farmers and consumers.

Developing such technologies requires that WHEAT also invest in human capacity development.
“Varieties derived from WHEAT breeding lines are already sown on nearly half of the world’s wheat lands and which bring economic benefits of about $3.1 billion each year,” Porter said, citing a 2016 analysis of WHEAT impacts.

Resource-conserving cropping practices from WHEAT, such as more targeted use of nitrogen fertilizers or sowing wheat into untilled soils and crop residues, can raise wheat farmers’ incomes while curbing greenhouse gas emissions, if widely adopted, he added. “Zero tillage is already being used to sow wheat on 1.8 million hectares in South Asia’s extensive rice-wheat rotations, and state government officials in India are implementing policies to support more widespread adoption.”

Personal information
A member of the WHEAT Independent Steering Committee since 2014, Porter has published more than 140 papers in reviewed journals, won four international prizes for research and teaching, and served as president of the European Society for Agronomy and was Chief Editor of the European Journal of Agronomy for many years. He led the writing of the chapter on food production and security for the Intergovernmental Panel on Climate Change 5th Assessment. Porter was elected as both a Fellow of the Royal Swedish Academy for Agriculture and Forestry and the European Academy of Sciences in 2014 and was knighted by the French government via the Order of Agriculture Merit in March 2016. Porter is an emeritus professor at the University of Copenhagen, Denmark and the Natural Resources Institute at the University of Greenwich UK and an honorary professor at Lincoln University, New Zealand. He is a member of the Scientific Council of the Institut National de la Recherche Agronomique (INRA) and currently consulting professor at Montpellier SupAgro, France on a project for Capacity Building in Crop Modelling financed by the Agropolis Foundation and Labex Agro.

For more information or interviews:
Mike Listman | Communications officer
CGIAR Research Program on Wheat (http://wheat.org)
tel: +52 (55) 5804 7537
skype: mikeltexcoco
cel: +52 (1595) 114 9743