Posts Tagged ‘climate change’

Activating the gene power in seeds to boost wheat’s climate resilience

As part of varied approaches at the International Maize and Wheat Improvement Center (CIMMYT) to unleash the power of wheat biodiversity, researchers from India and Mexico have been mobilizing native diversity from ancestral versions of wheat and related grasses to heighten the crop’s resilience to dryness and heat—conditions that have held back wheat yields for several decades and will worsen as earth’s climate changes—and their results are beginning to reach breeders worldwide.

In the wheat component of the CIMMYT-led Seeds of Discovery (SeeD) project, by 2016 the scientists had cross-pollinated elite wheat lines with more than 1,000 heirloom wheat varieties and “synthetic wheats” — the result of interbreeding wheat with hardy wild grasses.

The team has since refined the experimental wheat lines from this work and shared them with scientists in Australia, India, Iran, Mexico, Pakistan, and the United Kingdom.

South Asia: A laboratory for heat effects on wheat. The results are particularly relevant for India, whose farmers produce some 90 million tons of wheat each year and where overall warming and the increasingly variable onset of pre-monsoon heat threatens wheat crops.

Recognizing the value of the enhanced wheat genetic resources to address this and other challenges, the government of Punjab state, one of India’s leading wheat producers, is supporting SeeD’s wheat research at the Borlaug Institute for South Asia (BISA) Ludhiana, Punjab, experiment station, according to Kevin Pixley, director of CIMMYT’s genetic resources program.

“To break through wheat’s current yield-gain ceiling of less than 1 percent per year, wheat plants must be able produce much more while withstanding hot, dry weather and crop diseases,” said Pixley, speaking at a SeeD workshop at Punjab Agricultural University (PAU), Ludhiana, in March. “To develop such wheats, breeders need access to useful characteristics from unbred materials and wild relatives through pre-breeding, a process to develop bridging lines that carry the useful traits and can be used easily by breeders to cross those qualities into the best modern wheat varieties.”

Organized by BISA, the workshop provided a forum for scientists from the public national breeding programs of South Asia to share their data and feedback, after testing wheat pre-breeding lines developed at CIMMYT under heat and drought stress.

Workshop participants on a field visit at BISA farm, Ladhowal, Ludhiana (photo: Naveen Gupta/ CIMMYT-BISA).

Breeders are testing and using experimental wheat lines. “Systematic, large-scale deployment of useful wheat diversity from gene banks is extremely important to address increasing demand and climate change threats and generally broaden the genetic diversity of the wheat varieties that farmers grow,” said Sukhwinder Singh, who leads SeeD’s wheat research component. “We really appreciate the help of national partners to evaluate early-generation pre-breeding lines in their respective regions.”

The event drew 15 breeders and 20 PAU students and administrators, including the opening speakers Sarvejit Singh, PAU Director of Research, and D.S. Brar, PAU adjunct professor.

Among other things, workshop participants assessed the value of the wheat lines for their respective institutes’ research programs.

  • Achla Sharma and the team from PAU, Ludhiana, are tapping into pre-Green Revolution germplasm to broaden the genetic base of their breeding program. They showed two years of data that identified SeeD pre-breeding lines promising for tolerance to drought, salinity and soil micronutrient deficiency, as well as stripe and leaf rust resistance.
  • Sandeep Kumar, of India’s National Bureau of Plant Genetic Resources (NBPGR), has screened thousands of NBPGR accessions for heat tolerance and has been collaborating with CIMMYT wheat physiologist Matthew Reynolds for the past three years. He would like to compare NBPGR phenotypes and genotypes with materials from SeeD and the CIMMYT genebank.
  • Sanjay Kumar Singh, of the Indian Institute of Wheat and Barley Research (IIWBR) in Karnal, reported that about one-third of the 164 SeeD pre-breeding lines they have evaluated are promising for rust resistance, and several look useful for heat and drought tolerance.
  • Jai Jaiswal, of G.B. Pant University of Agriculture and Technology, Pantnagar, indicated that the maturity of SeeD pre-breeding lines is useful because it is similar or a few days earlier than the maturity of their checks. They are screening for heat tolerance and rust resistance, and appreciate the genotypic information available through CIMMYT/SeeD.
  • Ashwani Kumar and Daisy Basandrai from CSK Himachal Pradesh Agricultural University made a presentation on the potential of SeeD pre-breeding lines and landrace core sets evaluated at Malan station-Palampur. Based on artificially inoculated field and screenhouse trials, they have identified about 20 lines and 20 Iranian landraces with exciting levels of powdery mildew resistance.
  • Harminder Sidhu (BISA, CIMMYT) discussed how conservation agriculture contributes to climate change adaptation by saving water, nutrients and money, and maintaining cooler canopy temperature; it also reduces weeds and enables relay cropping. A discussion ensued on seeking germplasm for use in conservation agriculture with the objective of reducing weed competition.
  • Uttam Kumar (CIMMYT, BISA) spoke about genomic selection. Project partners expressed their interest in applying genomic selection to SeeD pre-breeding materials, for example, to predict performance in some environments using data from other environments.

Participants expressed great interest and their intent to continue field testing of wheat pre-breeding germplasm that appears promising for heat and drought tolerance and other traits, as well as to take part in analyses combining multi-location field data with genotypic data from SeeD.

Conserving, studying and using wheat genetic diversity. Located at CIMMYT headquarters in Central Mexico, the center’s wheat germplasm bank contains nearly 150,000 collections of seed of wheat and related species from more than 100 countries. These collections preserve the diversity of unique native varieties and wild relatives of wheat and are held under long-term storage for the benefit of humanity in accordance with the 2007 International Treaty on Plant Genetic Resources for Food and Agriculture, according to Pixley.

“CIMMYT researchers also apply targeted physiology and DNA technologies to broaden and leverage the native diversity of wheat for the challenges farmers face,” said Pixley. “Finally, the center leads an unparalleled international wheat improvement network whose contributions are found in the pedigrees of varieties sown on half of the world’s wheat area. As part of breeding nurseries and responses to requests for germplasm bank samples, in 2016 alone CIMMYT distributed more than 14 tons of experimental wheat seed in 306 shipments to 284 partners in 83 countries.”

The work of SeeD is supported by generous funding from Mexico’s Agriculture, Livestock, Rural Development, Fisheries, and Food Secretariat (SAGARPA), the government of Punjab, and the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

New study reveals how controlling wheat hormones can cool hot crops

By Katie Lutz

MEXICO CITY, Mexico (CIMMYT) — Reductions of spike-ethylene, a plant-aging hormone, could increase wheat yields by 10 to 15 percent in warm locations, according to a recent study published in New Phytologist journal.

Ethylene is usually produced by plants at different developmental stages and can cause a wide range of negative effects on plant growth and development.

Ravi Valluru observes wheat trials in the field at CIMMYT El Batán.

When hot weather hits a wheat field an increase in ethylene levels can lessen the amount of grains produced on ears or spikes by limiting the export of carbohydrates to pollen development.

“It was important to understand how different wheat varieties show yield responses to both ethylene gradients and ethylene inhibitors,” explained Ravi Valluru, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT), adding that the research was primarily done in northwestern Mexico using both landraces and modern lines under heat-stressed field conditions.

Valluru is part of a collaborative team of scientists from CIMMYT and Britain’s Lancaster University investigating ways to reduce ethylene production in wheat plants as a means to improve yields in hot weather conditions.

The team treated a diverse set of wheat varieties with silver nitrate, an inorganic compound traditionally used for medicinal and other purposes and that has been shown to control ethylene levels in plants.

“We have known for a long time that ethylene has negative effects on crop yields, but efforts have been meager so far to bring this knowledge into breeding programs,” Valluru said. “It’s very exciting that CIMMYT has initiated the important steps toward bringing the ethylene story to wheat breeding through this project.”

The study has revealed that different wheat varieties responded differently to ethylene and ethylene inhibitors. That’s good news, because breeders can then select the appropriate lines for growing in warmer climates to incorporate into breeding programs.

According to Valluru, breeders have selected for high yield over many years that has inadvertently lowered ethylene expression in modern, improved varieties.

“Being a gas, ethylene is a kind of ‘ethereal’ plant growth regulator, but when produced at higher levels, has a major impact on grain setting and root growth,” said Matthew Reynolds, head of the wheat physiology team at CIMMYT and co-author of the study. “Understanding it and determining its genetic bases are significant steps forward, and we can expect that this knowledge will be applied in breeding.”

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

rothamsted

Photo: A. Cortes/CIMMYT

EL BATAN, Mexico (CIMMYT)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.

“There is no doubt that our partnership can help make agriculture in the UK greener and more competitive, while improving food security and reducing import dependency for basic grains in emerging and developing nations,” said Achim Dobermann, director of Rothamsted Research, which was founded in 1843 and is the world’s longest running agricultural research station.

Individual Rothamsted and CIMMYT scientists have often worked together over the years, but are now forging a stronger, broader collaboration, according to Martin Kropff, CIMMYT director general. “We’ll combine the expertise of Rothamsted in such areas as advanced genetics and complex cropping systems with the applied reach of CIMMYT and its partners in developing countries,” said Kropff.

Nearly half of the world’s wheat lands are sown to varieties that carry contributions from CIMMYT’s breeding research and yearly economic benefits from the additional grain produced are as high as $3.1 billion.

Experts predict that by 2050 staple grain farmers will need to grow at least 60 percent more than they do now, to feed a world population exceeding 9 billion while addressing environmental degradation and climate shocks.

Rothamsted and CIMMYT will now develop focused proposals for work that can be funded by the UK and other donors, according to Hans Braun, director of CIMMYT’s global wheat program. “We’ll seek large initiatives that bring significant impact,” said Braun.

Cornell receives UK support to aid scientists fighting threats to global wheat supply

Ronnie Coffman (r), Cornell plant breeder and director of the new Delivering Genetic Gain in Wheat (DGGW) project, surveys rust resistant wheat in fields of the Ethiopian Institute for Agricultural Research with Bedada Girma (l), wheat breeder and Ethiopian coordinator for new project. Ethiopia is a major partner in the new grant. CREDIT: McCandless/Cornell

ITHACA, NY: Cornell University will receive $10.5 million in UK aid investment from the British people to help an international consortium of plant breeders, pathologists and surveillance experts overcome diseases hindering global food security efforts.

The funds for the four-year Delivering Genetic Gain in Wheat, or DGGW, project will build on a $24 million grant from the Bill & Melinda Gates Foundation, announced in March 2016, and bring the total to $34.5 million.

“Wheat provides 20 percent of the calories and protein consumed by people globally, but borders in Africa, South Asia and the Middle East are porous when it comes to disease pathogens and environmental stressors like heat and drought that threaten the world’s wheat supply,” said Ronnie Coffman, international plant breeder and director of International Programs at Cornell University, who leads the global consortium.

Read more…

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

by Mike Listman / 29 November 2016

Recent media reports show that the 19 million inhabitants of New Delhi are under siege from a noxious haze generated by traffic, industburningcloseries, cooking fires and the burning of over 30 million tons of rice straw on farms in the neighboring states of Haryana and Punjab.

However, farmers who rotate wheat and rice crops in their fields and deploy a sustainable agricultural technique known as “zero tillage” can make a significant contribution to reducing smog in India’s capital, helping urban dwellers breathe more easily.

Since the 1990s, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been working with national partners and advanced research institutes in India to test and promote reduced tillage which allows rice-wheat farmers of South Asia to save money, better steward their soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

The key innovation involves sowing wheat seed directly into untilled soil and rice residues in a single tractor pass, a method known as zero tillage. Originally deemed foolish by many farmers and researchers, the practice or its adaptations slowly caught on and by 2008 were being used to sow wheat by farmers on some 1.8 million hectares in India.

ths

The Turbo Happy Seeder allows farmers to sow a rotation crop directly into the residues of a previous crop—in this case, wheat seed into rice straw—without plowing, a practice that raises yields, saves costs and promotes healthier soil and cleaner air.

Click here to read more about how scientists and policymakers are promoting the technique as a key alternative for residue burning and to help clear Delhi’s deadly seasonal smog.

 

 

2015 ICARDA annual report: Towards Dynamic Drylands

ICARDA’s work in the severely food-and water-stressed Middle Eastern and North African countries puts it in a strong position to contribute to stability in the region, addressing the root causes of the migration—food insecurity, unemployment, drought and environmental degradation.

Center outcoicarda-2015-cover-mrmes in 2015 add to the body of evidence that demonstrates a clear potential and path towards productive and climate-resilient livelihoods for smallholders and livestock producers – a road towards ‘Dynamic Drylands’ – the theme of ICARDA’s 2015 Annual Report, which we proudly present.

To read the report on line or download a pdf copy, click here.

Mobilizing seed bank diversity for wheat improvement

During centrifugation, the emulsion for DNA extraction separates into two distinct phases. Chloroform:octanol is more dense than water solutions, so it forms the lower (green) layer. It is also more chemically attractive to molecules such as proteins and polysaccharides. These are thus separated out from the DNA, which is contained in the upper aqueous phase. This clear solution is carefully transferred to fresh centrifuge tubes using a pipette. Photo credit: CIMMYT. See the "DNA extraction" set that this photo is part of for more information and images.A recent study by a global team of researchers from CIMMYT, ICARDA, and the Global Crop Diversity Trust has uncovered a treasure trove of wheat genetic diversity to address drought and rising temperatures—constraints that cut harvests for millions of farmers worldwide and which are growing more severe with each passing year.

The team studied the molecular diversity of 1,423 spring bread wheat accessions that represent major global production environments, using high quality genotyping-by-sequencing (GBS) loci and gene-based markers for various adaptive and quality traits.

They discovered thousands of new DNA marker variations in landraces known to be adapted to drought (1,273 novel GBS SNPs) and heat (4,473 novel GBS SNPs), opening the potential to enrich elite breeding lines with novel alleles for drought and heat tolerance. New allelic variation for vernalization and glutenin genes was also identified in 47 landraces from Afghanistan, India, Iran, Iraq, Pakistan, Turkmenistan, and Uzbekistan.

Mean diversity index (DI) estimates revealed that synthetic hexaploids—created by crossing wheat’s wild grass ancestor Aegilops tauschii with durum wheat—are genetically more diverse than elite lines (DI = 0.267) or landraces (DI = 0.245). Lines derived from such crosses are already playing an increasingly important role in global and national breeding programs.

Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is key to sustaining crop genetic improvement.  The results have already been used to select 200 diverse germplasm bank accessions for pre-breeding and allele mining of candidate genes associated with drought and heat stress tolerance, thus channeling novel variation into breeding pipelines.

Published in the paper Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement, the research is part of CIMMYT’s ongoing Seeds of Discovery project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.

NAAS fellow M.L. Jat talks about climate change, sustainable agriculture

Katelyn Roett

Haryana-2015-cropped

M.L. Jat observing wheat germination in a zero-till field in Haryana, India (credit: DK Bishnoi/CIMMYT).

CIMMYT senior scientist M.L. Jat has received India’s National Academy of Agricultural Sciences (NAAS) fellowship in Natural Resource Management for his “outstanding contributions in developing and scaling” conservation agriculture-based management technologies for predominant cereal-based cropping systems in South Asia.

Jat’s research on conservation agriculture (CA) – sustainable and profitable agriculture that improves livelihoods of farmers via minimal soil disturbance, permanent soil cover, and crop rotations – has guided improvements in soil and environmental health throughout South Asia. His work has led to policy-level impacts in implementing CA practices such as precision land leveling, zero tillage, direct seeding, and crop residue management, and he has played a key role in building the capacity of CA stakeholders throughout the region.

Sustainable innovation, including climate-smart agriculture, were a major theme at the COP21 climate talks .

What are the major threats global climate change poses to South Asian agriculture?
Jat: South Asia is one of the most vulnerable regions in the world to climate change. With a growing population of 1.6 billion people, the region hosts 40% of the world’s poor and malnourished on just 2.4% of the world’s land. Agriculture makes up over half of the region’s livelihoods, so warmer winters and extreme, erratic weather events such as droughts and floods have an even greater impact. Higher global temperatures will continue to add extreme pressure to finite land and other natural resources, threatening food security and livelihoods of smallholder farmers and the urban poor.

How does CA mitigate and help farmers adapt to climate change?
Jat:
In South Asia, climate change is likely to reduce agricultural production 10‐50% by 2050 and beyond, so adaptation measures are needed now. Climate change has complex and local impacts, requiring scalable solutions to likewise be locally-adapted. Climate-smart agriculture practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, according to ample data on CA management practices throughout the region.

What future developments are needed to help South Asian farmers adapt to climate change?
Jat: Targeting and access to CA sustainable intensification technologies, knowledge, and training—such as precision water and nutrient management or mechanized CA solutions specific to a farmer’s unique landscape—will be critical to cope with emerging risks of climate variability. Participatory and community-based approaches will be critical for scaled impact as well. For example, the climate smart village concept allows rural youth and women to be empowered not only by becoming CA practitioners but also by serving as knowledge providers to the local community, making them important actors in generating employment and scaling CA and other climate-smart practices. Where do you see your research heading in the next 10-15 years? Now that there are clear benefits of CA and CSA across a diversity of farms at a regional level, as well as increased awareness by stakeholders of potential challenges of resource degradation and food security in the face of climate change, scaling up CA and CSA interventions will be a priority. For example, the Government of Haryana in India has already initiated a program to introduce CSA in 500 climate smart villages. Thanks to this initiative, CA and CSA will benefit 10 million farms across the region in the next 10-15 years.


Climate-Smart Villages are a community-based approach to adaptation and mitigation of climate change for villages in high-risk areas, which will likely suffer most from a changing climate. Created by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the project began in 2011 with 15 climate-smart villages in West Africa, East Africa and South Asia, and is expanding to Latin America and Southeast Asia. CIMMYT is leading the CCAFS-CSV project in South Asia.


 

Clone of magic wheat disease-resistance gene sheds light on new defense mechanism

APR-resistance-mr

A resistant wheat line surrounded by susceptible lines infected by rust disease (photo: CIMMYT/Julio Huerta).

Mike Listman

Scientists have sequenced and described a gene that can help wheat to resist four serious fungal diseases, potentially saving billions of dollars in yearly grain losses and reducing the need for farmers to use costly fungicides, once the gene is bred into high-yielding varieties.

A global research team isolated the wheat gene Lr67, revealing how it hampers fungal pathogen growth through a novel mechanism.

The study, which was published in Nature Genetics on 9 November, involved scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Chinese Academy of Agricultural Sciences (CAAS), Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP), the Norwegian University of Life Sciences and scientists from Australia, including the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the University of Newcastle, and the University of Sydney.

According to Ravi Singh, CIMMYT distinguished scientist, wheat breeder, and co-author of the new study, Lr67 belongs to a group of three currently-known “magic” genes that help wheat to resist all three wheat rusts and powdery mildew, a disease that attacks wheat in humid temperate regions. The genes act in different ways but all slow — rather than totally stopping — disease development. When combined with other such partial resistance genes through breeding, they provide a strong, longer-lasting protection for plants, boosting food security.

To read more about Lr67‘s cloning and resistance type, click here.

Global Partnership Propels Wheat Productivity in China

ChinaFarmer

Mike Listman

Benefits of three decades of international collaboration in wheat research have added as much as 10.7 million tons of grain — worth US $3.4 billion — to China’s national wheat output, according to a study by the Center for Chinese Agricultural Policy (CCAP) of the Chinese Academy of Science.

Described in a report published on 30 March 2015 by the CGIAR Research Program on Wheat, the research specifically examined China’s partnership with the International Maize and Wheat Improvement Center (CIMMYT) and the free use of CIMMYT improved wheat lines and other genetic resources during 1982-2011. The conclusions are based on a comprehensive dataset that included planted area, pedigree, and agronomic traits by variety for 17 major wheat-growing provinces in China.

“Chinese wheat breeders first acquired disease resistant, semi-dwarf wheat varieties from CIMMYT in the late 1960s and incorporated desirable traits from that germplasm into their own varieties,” said Dr. Jikun Huang, Director of CCAP and first author of the new study. “As of the 1990s, it would be difficult to find anything other than improved semi-dwarf varieties in China. Due to this and to investments in irrigation, agricultural research and extension, farmers’ wheat yields nearly doubled during 1980-95, rising from an average 1.9 to 3.5 tons per hectare.”

The new study also documents increasing use of CIMMYT germplasm by wheat breeders in China. “CIMMYT contributions are present in more than 26% of all major wheat varieties in China after 2000,” said Huang. “But our research clearly shows that, far from representing a bottleneck in diversity, genetic resources from CIMMYT’s global wheat program have significantly enhanced China varieties’ performance for critical traits like yield potential, grain processing quality, disease resistance, and early maturity.”

WILL CHINA WHEAT FARMING RISE TO RESOURCE AND CLIMATE CHALLENGES?

The world’s number-one wheat producer, China harvests more than 120 million tons of wheat grain yearly, mainly for use in products like noodles and steamed bread. China is more or less self-sufficient in wheat production, but wheat farmers face serious challenges. For example, wheat area has decreased by more than one-fifth in the past three decades, due to competing land use.

“This trend is expected to continue,” said Huang, “and climate change and the increasing scarcity of water will further challenge wheat production. Farmers urgently need varieties and cropping systems that offer resilience under drought, more effective use of water and fertilizer, and resistance to evolving crop diseases. Global research partnerships like that with CIMMYT will be vital to achieve this.”

Dr. Qiaosheng Zhuang, Research Professor of Chinese Academy of Agricultural Science (CAAS) and a Fellow of Chinese Academy of Science, called the new report “…an excellent, detailed analysis and very useful for scientists and policy makers. CIMMYT germplasm and training have made a momentous contribution to Chinese wheat.”

FOR MORE INFORMATION OR TO REQUEST AN INTERVIEW 

Dr. Jikun Huang
Director
Center for Chinese Agricultural Policy (CCAP)
Email: jkhuang.ccap@igsnrr.ac.cn
Tel: 86-10-64889440 or 64888601

Dr. Zhonghu He
Distinguished Scientist and Wheat Breeder
International Maize and Wheat Improvement Center (CIMMYT)
Email: zhhecaas@163.com

Mike Listman
Communications officer, CGIAR Research Program on Wheat
Email: m.listman@cgiar.org
Tel: +52 (55) 5804 7537
Mobile: +52 1595 1089 677
Skype: mikeltexcoco