Posts Tagged ‘cropping systems’

Scientists in Afghanistan set new program to raise wheat harvests

February 17, 2017

Photo: Masud Sultan/CIMMYT

Photo: Masud Sultan/CIMMYT

KABUL (CIMMYT) – Inadequate access to new disease-resistant varieties and short supplies of certified seed are holding back wheat output and contributing to rising food insecurity in Afghanistan, according to more than 50 national and international wheat experts.

Wheat scientists and policymakers discussed challenges to the country’s most-produced crop during a two-day meeting at Agricultural Research Institute of Afghanistan (ARIA) headquarters in Kabul, as part of the 5th Annual Wheat Researchers’ Workshop in November 2016. They took stock of constraints to the 2017 winter wheat crop, including dry autumn weather and rapidly-evolving strains of the deadly wheat disease known as yellow rust.

“Old wheat varieties are falling prey to new races of rust,” said Qudrat Soofizada, director for Adaptive Research at ARIA, pointing out that the country’s 2016 wheat harvest had remained below 5 million tons for the second year in a row, after a record harvest of more than 5.3 million tons in 2014.

The workshop was attended by 51 participants belonging to several ARIA research stations and experts from the International Maize and Wheat Improvement Center (CIMMYT), the Australian Center for International Agricultural Research (ACIAR) and World Bank’s Afghanistan Agriculture Input Project (AAIP).

Afghanistan has been importing around 2.5 million tons of cereal grain — mainly wheat — in the last two years, with most of that coming from Kazakhstan and Pakistan, according to recent reports from the Food and Agriculture Organization (FAO) of the United Nations.

“Most wheat farmers save grain from prior harvests and use that as seed, rather than sowing certified seed of newer, high-yielding and disease resistant varieties,” said Rajiv Sharma, CIMMYT senior scientist and representative at the center’s office in Afghanistan. “This is holding back the country’s wheat productivity potential.”

Sharma explained that CIMMYT has been supporting efforts of Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) to boost supplies of certified seed of improved varieties and of critical inputs like fertilizer.

“CIMMYT has worked with Afghanistan wheat scientists for decades and more than 90 percent of the country’s certified wheat varieties contain genetic contributions from our global breeding efforts,” Sharma explained.

Since 2012, the center has organised more than 1,700 wheat variety demonstrations on farmers’ fields and trained over 1,000 farmers. CIMMYT scientists are also conducting field and DNA analyses of Afghan wheats, which will allow faster and more effective breeding.

The FAO reports showed that the government, FAO and diverse non-governmental organizations had distributed some 10,000 tons of certified seed of improved wheat varieties for the current planting season. With that amount of seed farmers can sow around 67,000 hectares, but this is only some 3 percent of the country’s approximately 2.5 million-hectare wheat area.

“We have been informing the National Seed Board about older varieties that are susceptible to the rusts,” said Ghiasudin Ghanizada, head of wheat pathology at MAIL/ARIA, Kabul, adding that efforts were being made to take such varieties out of the seed supply chain.

After discussions, Ghanizada and MAIL/ARIA associates M. Hashim Azmatyar and Abdul Latif Rasekh presented the technical program for breeding, pathology and agronomy activities to end 2016 and start off 2017.

Zubair Omid, hub coordinator, CIMMYT-Afghanistan, presented results of wheat farmer field demonstrations, informing that grain yields in the demonstrations ranged from 2.8 to 7.6 tons per hectare.

T.S. Pakbin, former director of ARIA, inaugurated the meeting and highlighted CIMMYT contributions to Afghanistan’s wheat improvement work. M.Q. Obaidi, director of ARIA, thanked participants for traveling long distances to attend, despite security concerns. Nabi Hashimi, research officer, CIMMYT-Afghanistan, welcomed participants on behalf of CIMMYT and wished them good luck for the 2016-17 season.

Wheat breeding trial results were presented by Zamarai Ahmadzada from Darulaman Research Station, Kabul; Aziz Osmani from Urad Khan Research Station, Herat; Shakib Attaye from Shisham Bagh Research Station, Nangarhar; Abdul Manan from Bolan Research Station, Helmand; Said Bahram from Central Farm, Kunduz; Najibullah Jahid from Kohkaran Research Station, Kandahar; and Sarwar Aryan from Mulla Ghulam Research Station, Bamyan.

Agronomy results from the research stations of Badakhshan, Herat, Kabul, Kunduz, Helmand and Bamyan were also presented and summarized by Abdul Latif Rasikh, head of Wheat Agronomy, ARIA headquarters, Badam Bagh, Kabul

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

rothamsted

Photo: A. Cortes/CIMMYT

EL BATAN, Mexico (CIMMYT)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.

“There is no doubt that our partnership can help make agriculture in the UK greener and more competitive, while improving food security and reducing import dependency for basic grains in emerging and developing nations,” said Achim Dobermann, director of Rothamsted Research, which was founded in 1843 and is the world’s longest running agricultural research station.

Individual Rothamsted and CIMMYT scientists have often worked together over the years, but are now forging a stronger, broader collaboration, according to Martin Kropff, CIMMYT director general. “We’ll combine the expertise of Rothamsted in such areas as advanced genetics and complex cropping systems with the applied reach of CIMMYT and its partners in developing countries,” said Kropff.

Nearly half of the world’s wheat lands are sown to varieties that carry contributions from CIMMYT’s breeding research and yearly economic benefits from the additional grain produced are as high as $3.1 billion.

Experts predict that by 2050 staple grain farmers will need to grow at least 60 percent more than they do now, to feed a world population exceeding 9 billion while addressing environmental degradation and climate shocks.

Rothamsted and CIMMYT will now develop focused proposals for work that can be funded by the UK and other donors, according to Hans Braun, director of CIMMYT’s global wheat program. “We’ll seek large initiatives that bring significant impact,” said Braun.

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

by Mike Listman / 29 November 2016

Recent media reports show that the 19 million inhabitants of New Delhi are under siege from a noxious haze generated by traffic, industburningcloseries, cooking fires and the burning of over 30 million tons of rice straw on farms in the neighboring states of Haryana and Punjab.

However, farmers who rotate wheat and rice crops in their fields and deploy a sustainable agricultural technique known as “zero tillage” can make a significant contribution to reducing smog in India’s capital, helping urban dwellers breathe more easily.

Since the 1990s, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been working with national partners and advanced research institutes in India to test and promote reduced tillage which allows rice-wheat farmers of South Asia to save money, better steward their soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

The key innovation involves sowing wheat seed directly into untilled soil and rice residues in a single tractor pass, a method known as zero tillage. Originally deemed foolish by many farmers and researchers, the practice or its adaptations slowly caught on and by 2008 were being used to sow wheat by farmers on some 1.8 million hectares in India.

ths

The Turbo Happy Seeder allows farmers to sow a rotation crop directly into the residues of a previous crop—in this case, wheat seed into rice straw—without plowing, a practice that raises yields, saves costs and promotes healthier soil and cleaner air.

Click here to read more about how scientists and policymakers are promoting the technique as a key alternative for residue burning and to help clear Delhi’s deadly seasonal smog.

 

 

2015 ICARDA annual report: Towards Dynamic Drylands

ICARDA’s work in the severely food-and water-stressed Middle Eastern and North African countries puts it in a strong position to contribute to stability in the region, addressing the root causes of the migration—food insecurity, unemployment, drought and environmental degradation.

Center outcoicarda-2015-cover-mrmes in 2015 add to the body of evidence that demonstrates a clear potential and path towards productive and climate-resilient livelihoods for smallholders and livestock producers – a road towards ‘Dynamic Drylands’ – the theme of ICARDA’s 2015 Annual Report, which we proudly present.

To read the report on line or download a pdf copy, click here.

NAAS fellow M.L. Jat talks about climate change, sustainable agriculture

Katelyn Roett

Haryana-2015-cropped

M.L. Jat observing wheat germination in a zero-till field in Haryana, India (credit: DK Bishnoi/CIMMYT).

CIMMYT senior scientist M.L. Jat has received India’s National Academy of Agricultural Sciences (NAAS) fellowship in Natural Resource Management for his “outstanding contributions in developing and scaling” conservation agriculture-based management technologies for predominant cereal-based cropping systems in South Asia.

Jat’s research on conservation agriculture (CA) – sustainable and profitable agriculture that improves livelihoods of farmers via minimal soil disturbance, permanent soil cover, and crop rotations – has guided improvements in soil and environmental health throughout South Asia. His work has led to policy-level impacts in implementing CA practices such as precision land leveling, zero tillage, direct seeding, and crop residue management, and he has played a key role in building the capacity of CA stakeholders throughout the region.

Sustainable innovation, including climate-smart agriculture, were a major theme at the COP21 climate talks .

What are the major threats global climate change poses to South Asian agriculture?
Jat: South Asia is one of the most vulnerable regions in the world to climate change. With a growing population of 1.6 billion people, the region hosts 40% of the world’s poor and malnourished on just 2.4% of the world’s land. Agriculture makes up over half of the region’s livelihoods, so warmer winters and extreme, erratic weather events such as droughts and floods have an even greater impact. Higher global temperatures will continue to add extreme pressure to finite land and other natural resources, threatening food security and livelihoods of smallholder farmers and the urban poor.

How does CA mitigate and help farmers adapt to climate change?
Jat:
In South Asia, climate change is likely to reduce agricultural production 10‐50% by 2050 and beyond, so adaptation measures are needed now. Climate change has complex and local impacts, requiring scalable solutions to likewise be locally-adapted. Climate-smart agriculture practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, according to ample data on CA management practices throughout the region.

What future developments are needed to help South Asian farmers adapt to climate change?
Jat: Targeting and access to CA sustainable intensification technologies, knowledge, and training—such as precision water and nutrient management or mechanized CA solutions specific to a farmer’s unique landscape—will be critical to cope with emerging risks of climate variability. Participatory and community-based approaches will be critical for scaled impact as well. For example, the climate smart village concept allows rural youth and women to be empowered not only by becoming CA practitioners but also by serving as knowledge providers to the local community, making them important actors in generating employment and scaling CA and other climate-smart practices. Where do you see your research heading in the next 10-15 years? Now that there are clear benefits of CA and CSA across a diversity of farms at a regional level, as well as increased awareness by stakeholders of potential challenges of resource degradation and food security in the face of climate change, scaling up CA and CSA interventions will be a priority. For example, the Government of Haryana in India has already initiated a program to introduce CSA in 500 climate smart villages. Thanks to this initiative, CA and CSA will benefit 10 million farms across the region in the next 10-15 years.


Climate-Smart Villages are a community-based approach to adaptation and mitigation of climate change for villages in high-risk areas, which will likely suffer most from a changing climate. Created by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the project began in 2011 with 15 climate-smart villages in West Africa, East Africa and South Asia, and is expanding to Latin America and Southeast Asia. CIMMYT is leading the CCAFS-CSV project in South Asia.


 

Martin Kropff of Wageningen UR appointed Director General of CIMMYT

Texcoco, Mexico – 26 February 2015. The Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT), is pleased to announce that Prof. Dr. Martin Kropff has accepted an appointment as the new Director General of CIMMYT, starting 1 June 2015. He follows Dr. Thomas Lumpkin, Director General since 2008, who has significantly expanded CIMMYT’s partnerships and funding, helping the center to be a leading and hugely respected institution in the CGIAR system. Read more about Kropff, including his background and thoughts on CIMMYT’s role and directions. 
MKropff-lr-jpg-cropped