Posts Tagged ‘environmental impact’

Q+A with Iván Ortíz-Monasterio on nitrogen dosages and greenhouse gases

Iván Ortíz-Monasterio, expert on sustainable intensification and wheat crop management at the International Maize and Wheat Improvement Center (CIMMYT), recently took part in a study detailing the detriments of excess fertilizer use and the benefits of more precise dosages.

In the following interview, he discusses the overuse of nitrogen fertilizer and related consequences, his experience with farmers, and his outlook for the future. According to Ortíz-Monasterio and study co-authors, research on wheat in the Yaqui Valley, state of Sonora, northwestern Mexico, and home to CIMMYT’s Norman E. Borlaug Experiment Station (CENEB), has direct implications for wheat crop management worldwide.

“The Yaqui Valley is agro-climatically representative of areas where 40 percent of the world’s wheat is grown, including places like the Indo-Gangetic Plains of India and Pakistan, the Nile Delta in Egypt, and the wheat lands of China,” said Ortíz-Monasterio.

  1. A key finding of the new publication was that, after a certain point, applying more nitrogen fertilizer does not increase yields, making excessive applications essentially a drain on farmers’ resources. Why then do farmers continue to apply more fertilizer than the crop needs?

Well there is a risk, if you under-apply N fertilizer, your yield goes down. Farmers are afraid that the yield will be lower and that their profit will be lower. The cost of under-applying for them is greater than the cost of over-applying, because they’re not paying all the costs of over applying. Those costs include the environmental impacts associated with greenhouse gas emissions, at a regional scale in the case of the Yaqui Valley because of nitrification of the Sea of Cortez, and at a local level due to contamination of the water table. All these costs are passed on to society. If we passed them on to farmers, then they would be more concerned about over-applying nitrogen fertilizers.

-Do you think farmers becoming more concerned is something that could happen?

Well there are starting to be more regulations in Europe. In the UK, farmers cannot apply any nitrogen before or at sowing; they can apply fertilizer only once the plant is about 15 centimeters tall. In other parts of Europe, like Germany, farmers cannot apply more than 150 kilograms of nitrogen on wheat, so it’s happening in other parts of the world. The government of Mexico and others are making commitments to reduce nitrous oxide emissions by 20 percent by 2030 and, in the case of agriculture, the main source of nitrous oxide is nitrogen fertilizer. To meet such commitments, governments will have to take policy action so, yes; I think there’s a good chance something will happen.

  1. There are technologies that can help farmers know precisely when to apply fertilizer and how much, for optimal crop yield and nitrogen use. Do many farmers use them? Why or why not?

NDVI (normalized difference vegetative index) map. Photo: CIMMYT.

Something interesting to me is what’s happening right now. For the last 10 years, we’ve been working with Yaqui Valley farmers to test and promote hand-held sensors and hiring farm advisors paid with government money who provide this service free to farmers, and adoption was high. Then the government removed the subsidy, expecting farmers to begin covering the cost, but

farmers didn’t want to pay for it.

Then a company that uses drones approached me and other researchers in the region and requested our help to convert wheat crop sensor data obtained using airborne drones to recommended fertilizer dosages. We agreed and, in their first year of operation, farmers growing wheat on 1,000 hectares paid for this service. I don’t know what it is—maybe seeing a colorful map is more sexy—but farmers seem to be willing to pay if you fly a drone to collect the data instead of having a farm advisor walk over the field. But it’s great! In the past we relied on the government to transfer the technology and now we have this  great example of a private-public partnership, where a company is helping to transfer the technology and making a profit, so that will make it sustainable. I’m very excited about that!

  1. Does CIMMYT have a plan to increase adoption of these technologies?

A CIMMYT technician uses a hand-held sensor to measure NDVI (normalized difference vegetative index) in a wheat field at the center’s CENEB experiment station near Ciudad Obregón, Sonora, northern Mexico. Photo: CIMMYT.

We’re not married to one technology, but need to work with all of them. You know we started with Greekseeker, which is a ground-based sensor, and now we’re also working with drones, with manned airplanes mounted with cameras, and even satellite images. So, there are four different ways to collect the data, and we’ve seen that the Greenseeker results correlate well with all of them, so the technology we developed originally for Greenseeker can be used with all the other platforms.

  1. Are you optimistic that farmers can shift their perceptions in this area and significantly reduce their nitrogen use?

I think we’re moving in that direction, but slowly. We need policy help from the government. Officials need to give some type of incentive to farmers to use the technology, because when farmers do something different they see it as a risk. To compensate for that risk, give them a carrot, rather than a stick, and I think that will help us move the technology faster.

CIMMYT 2016 annual report ‘Maize and wheat for future climates’

The 2016 CIMMYT Annual Report details the strong partnerships and science through which CIMMYT creates and shares innovations for farmers to grow more, earn more and reduce environmental impacts, now and in the future. Highlights include:

  • Maize and wheat breeding speeds up to equip farmers with varieties for dryer, hotter climates, and to resist evolving pathogens and pests.
  • Scientists refute trendy claims disparaging wheat and promote the nutritional benefits of this vital food grain.
  • Growing partnerships, including the joint launch with Henan Agricultural University, China, of a new maize and wheat research center.
  • Dramatically expanded maize seed markets for Mexican farmers.
  • Use of zero tillage and other sustainable agriculture practices in southern Africa and South Asia.

In 2016, CIMMYT marked and celebrated 50 years of applying excellence in maize and wheat science to improve the livelihoods of the disadvantaged. With the commitment and continuous support of dedicated staff, partners and donors, the Center will continue contributing to a food- and nutrition-secure future for all.

Click here TO VIEW OR DOWNLOAD A COPY OF THE REPORT.

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

By Mike Listman/CIMMYT

EL BATAN, Mexico (January 25, 2017)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

By Mike Listman/CIMMYT 

ths

The Turbo Happy Seeder allows farmers to sow a rotation crop directly into the residues of a previous crop—in this case, wheat seed into rice straw—without plowing, a practice that raises yields, saves costs and promotes healthier soil and cleaner air.

EL BATAN, Mexico (November 28,2016) – Recent media reports show that the 19 million inhabitants of New Delhi are under siege from a noxious haze generated by traffic, industries, cooking fires and the burning of over 30 million tons of rice straw on farms in the neighboring states of Haryana and Punjab.

However, farmers who rotate wheat and rice crops in their fields and deploy a sustainable agricultural technique known as “zero tillage” can make a significant contribution to reducing smog in India’s capital, helping urban dwellers breathe more easily.

Since the 1990s, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been working with national partners and advanced research institutes in India to test and promote reduced tillage which allows rice-wheat farmers of South Asia to save money, better steward their soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

The key innovation involves sowing wheat seed directly into untilled soil and rice residues in a single tractor pass, a method known as zero tillage. Originally deemed foolish by many farmers and researchers, the practice or its adaptations slowly caught on and by 2008 were being used to sow wheat by farmers on some 1.8 million hectares in India.

Click here to read more about how scientists and policymakers are promoting the technique as a key alternative for residue burning and to help clear Delhi’s deadly seasonal smog.

 

 

Available Now: The 2015 WHEAT Annual Report

By Katie Lutz/CIMMYT

EL BATAN, Mexico (August 24,2016)- High returns to global wheat research Building on more than a half-century of proven impacts, the global wheat improvement system led by CGIAR centers continues to be the chief source for wheat farmers in Africa, Asia and Latin America of critical traits such as high yields, disease resistance and enhanced nutrition and quality.

A recently-published study found that CGIAR-derived varieties – nearly all traceable to CIMMYT and ICARDA breeding programs – cover more than 100 million of 220 million hectares worldwide and bring economic benefits of as much as $3.1 billion each year. To achieve impacts in wheat agri-food systems, CIMMYT and ICARDA depend on national partnerships in over 100 countries and critical support from CGIAR Fund Donors and other contributors, whom we sincerely thank on behalf of the world’s wheat farmers and consumers.

NAAS fellow M.L. Jat talks about climate change, sustainable agriculture

By Katelyn Roett/CIMMYT

Haryana-2015-cropped

M.L. Jat observing wheat germination in a zero-till field in Haryana, India. Photo: DK Bishnoi/CIMMYT

EL BATAN, Mexico (December 18,2016)- CIMMYT senior scientist M.L. Jat has received India’s National Academy of Agricultural Sciences (NAAS) fellowship in Natural Resource Management for his “outstanding contributions in developing and scaling” conservation agriculture-based management technologies for predominant cereal-based cropping systems in South Asia.

Jat’s research on conservation agriculture (CA) – sustainable and profitable agriculture that improves livelihoods of farmers via minimal soil disturbance, permanent soil cover, and crop rotations – has guided improvements in soil and environmental health throughout South Asia. His work has led to policy-level impacts in implementing CA practices such as precision land leveling, zero tillage, direct seeding, and crop residue management, and he has played a key role in building the capacity of CA stakeholders throughout the region.

Sustainable innovation, including climate-smart agriculture, were a major theme at the COP21 climate talks .

First International Biological Nitrification Inhibition Workshop Held in Japan

Leymus_racemosus_(Lam.)_Tzvel._1

Leymus racemosus (Lam.) Tzvel. Photo: Bogomolov, PL

EL BATAN, Mexico (April 20,2015)- “The International Biological Nitrification Inhibition (BNI) Workshop held at The Japan International Research Center for Agricultural Sciences (JIRCAS) on 2 and 3 March, 2015 was attended by 40 researchers representing four CGIAR Centers (CIAT, CIMMYT, ICRISAT and the International Livestock Research Institute [ILRI]) leading four CGIAR Research Programs (CRPs), including the Research Program on Climate Change, Agriculture and Food Security (CCAFS), Wheat(WHEAT), the Research Program on Dryland-Cereals, the Research Program on Livestock and FishLivestock and Fish) and several Japanese organizations (national agricultural institutes, and universities.)”

Read the major outcomes of the 2015 workshop here:  http://www.cimmyt.org/en/what-we-do/wheat-research/item/outcome-of-first-international-biological-nitrification-inhibition-workshop