Posts Tagged ‘food security’

Scientists confirm value of whole grains and wheat for nutrition and health

15 February 2018

New study squashes claims that gluten and wheat are bad for human health. Photo: CIMMYT/ Mike Listman

Based on a recent, special compilation of 12 reports published in the scientific journal Cereal Foods World during 2014-2017, eating whole grains is actually beneficial for brain health and associated with reduced risk of diverse types of cancer, coronary disease, diabetes, hypertension, obesity and overall mortality.EL BATAN, Mexico (CIMMYT) – A new, exhaustive review of recent scientific studies on cereal grains and health has shown that gluten- or wheat-free diets are not inherently healthier for the general populace and may actually put individuals at risk of dietary deficiencies.

“Clear and solid data show that eating whole-grain wheat products as part of a balanced diet improves health and can help maintain a healthy body weight, apart from the 1 percent of people who suffer from celiac disease and another 2 to 3 percent who are sensitive to wheat,” said Carlos Guzmán, wheat nutrition and quality specialist at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), which produced the compilation.

Guzmán said wheat and other grains are inexpensive sources of energy that also provide protein, digestible fiber, minerals, vitamins, and other beneficial phytochemicals.

“Among wheat’s greatest benefits, according to the research, is fiber from the bran and other grain parts,” he explained. “Diets in industrialized countries are generally deficient in such fiber, which helps to regulate digestion and promote the growth of beneficial gut bacteria.”

Guzmán and hundreds of other grain quality and health specialists will meet for the 4th Latin American Cereals Conference and the 13th International Gluten Workshop, organized jointly by CIMMYT and the International Association for Cereal Science and Technology (ICC) in Mexico City from 11 to 17 March 2018.

Contributing to humankind’s development for the last 10,000 years, wheat is cultivated on some 220 million hectares (539 million acres) worldwide. The crop accounts for a fifth of the world’s food and is the main source of protein in many developing and developed countries, and second only to rice as a source of calories globally. In the many countries where milling flours are fortified, wheat-based foods provide necessary levels of essential micronutrients such as iron, zinc, folic acid and vitamin A.

Inhabitants in developing and industrialized countries are experiencing higher incidences of diabetes, allergies, inflammatory bowel disorder, and obesity. A profitable industry has developed around gluten- and wheat-free food products, which the popular press has promoted as beneficial for addressing such disorders. But much scientific evidence contradicts popular writings about these food products.

“Much of the anti-grain messaging comes from publications produced by supposed ‘specialists’ who are not nutritionists, and are often built on faulty premises.” according to Julie Miller Jones, Distinguished Scholar and Professor Emerita at St. Catherine University, U.S.A., and a key contributor to the review studies in the compilation.

“Causes of obesity and chronic disease are complex, and it is not only simplistic but erroneous to name a single food group as the cause or the cure for these problems,” Miller Jones explained.  “We do know that we consume large portions, too many calories, and too few fruits, vegetables, or whole grains.  Instead today’s lifestyles encourage consumption of many high calorie foods and beverages that contain few nutrients. Then the risks of poor diets are often amplified by our sedentary lifestyles.”

CIMMYT scientists are concerned that the negative portrayal of wheat to promote the lucrative gluten-free fad diet industry will discourage low-income families from consuming the grain as part of an affordable and healthy diet, particularly in areas where there are few low-cost alternatives.

Consumer Reports magazine reported in January 2015 that sales of “gluten-free” products soared 63 percent between 2012 and 2015, with almost 4,600 products introduced in 2014 alone. Retail sales of gluten-free foods in the United States were estimated at $12.2 billion in 2014 and by 2020 the market is projected to be valued at $23.9 billion, Statistica reports.

However, wheat biofortified through breeding or fortified during milling with zinc and iron can play a vital role in diets in areas where “hidden hunger” is a concern and where nutritional options are unaffordable or unavailable. About 2 billion people worldwide suffer from hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The compilation draws on more than 1,500 peer-reviewed studies regarding the dietary and health effects of eating cereals and wheat-based foods.

CIMMYT specialists also worry that misinformation about wheat might affect investments in vital research to sustain wheat production increases of at least 60 percent by 2050, the output required to keep pace with rising population and demand, according to Hans Braun, director of the center’s global wheat program.

“Climate change is already constraining wheat production in regions such as South Asia, where more than 500 million inhabitants eat wheat-based foods,” Braun said. “Worldwide, the crop is threatened by deadly pest and disease strains, water shortages, and depleted soils.”

“As we have seen in 2008, 2011, and just recently in Tunisia and Sudan, grain shortages or price hikes in bread can lead to social unrest,” Braun added. “The international community needs to speed efforts to develop and share high-yielding, climate-resilient, and disease-resistant wheat varieties that also meet humanity’s varied nutritional demands.”

The compilation was produced with special permission from AACC International.

Breakthrough in the battle against Ug99

Melania Figuroa and Peter Dodds
Thursday, January 25, 2018 (Posted on the Borlaug Global Rust Initiative web page)

Wheat stem rust at important flag leaf stage. Photo by Robert Park

A significant breakthrough in combatting wheat stem rust disease caused by the fungus Puccinia graminis f. sp. tritici was recently achieved through the combined work of an international collaborative team, showing the power of cooperative research approaches.

The emergence of the Ug99 race of stem rust in Africa and the Middle East together with the appearance of new strains in Europe catalyzed a major effort to identify new sources of stem rust resistance and breed these genes into wheat lines. However, the continued emergence of stem rust variants that overcome new resistance genes, now demands an increased focus on pathogen evolution and virulence mechanisms.

Numerous stem rust resistance (Sr) genes are known and in recent years several of these have been cloned and used to develop so-called ‘perfect’ markers to allow more rapid and accurate breeding. These genes typically encode immune receptors that recognize specific protein components of the fungal pathogen to trigger resistance. However, the molecules recognized by these Sr genes have been unknown until now, hampering our understanding of how new strains of P. graminis f. sp. tritici evolve to escape plant recognition.

New insight into this evolution came from the identification of the protein, AvrSr50, which is recognized by the wheat Sr50 resistance gene, by  an international collaboration led by Dr. Peter Dodds (CSIRO Food and Agriculture and University of Minnesota Adjunct Professor) and Professor Robert Park (University of Sydney and Director of theAustralian Cereal Rust Control Program) and involving teams in the UK and the US.

Click here to read the full article.

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver over 3,400 tons of high quality seed to farmers, which was sown on more than 100,300 hectares.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Photo: Atlabtamu/CIMMYT.

Usman Kadir. Photos here and above: CIMMYT/A.Habtamu.

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates FoundationEthiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

First blast resistant, biofortified wheat variety released in Bangladesh

Scientists inspecting plants for wheat blast infection, at a workshop in Bangladesh in February 2017. Photo: Chris Knight-Cornell.

DHAKA, Bangladesh (CIMMYT) — As wheat farmers in Bangladesh struggle to recover from a 2016 outbreak of a mysterious disease called “wheat blast,” the country’s National Seed Board (NSB) released a new, high-yielding, blast-resistant wheat variety, according to a communication from the Wheat Research Centre (WRC) in Bangladesh.

Called “BARI Gom 33,” the variety was developed by WRC using a breeding line from the International Maize and Wheat Improvement Center (CIMMYT), a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, according to Naresh C. Deb Barma, Director of WRC, who said the variety had passed extensive field and laboratory testing. “Gom” means “wheat grain” in Bangla, the Bengali language used in Bangladesh.

“This represents an incredibly rapid response to blast, which struck in a surprise outbreak on 15,000 hectares of wheat in southwestern Bangladesh just last year, devastating the crop and greatly affecting farmers’ food security and livelihoods, not to mention their confidence in sowing wheat,” Barma said.

Caused by the fungus Magnaporthe oryzae pathotype triticum, wheat blast was first identified in Brazil in 1985 and has constrained wheat farming in South America for decades. Little is known about the genetics or interactions of the fungus with wheat or other hosts. Few resistant varieties have been released in Brazil, Bolivia and Paraguay, the countries most affected by wheat blast.

The Bangladesh outbreak was its first appearance in South Asia, a region where rice-wheat cropping rotations cover 13 million hectares and over a billion inhabitants eat wheat as main staple.

Many blast fungal strains are impervious to fungicides, according to Pawan Singh, a CIMMYT wheat pathologist. “The Bangladesh variant is still sensitive to fungicides, but this may not last forever, so we’re rushing to develop and spread new, blast-resistant wheat varieties for South Asia,” Singh explained.

The urgent global response to blast received a big boost in June from the Australian Centre for International Agricultural Research (ACIAR), which funded an initial four-year research project to breed blast resistant wheat varieties and the Indian Council of Agricultural Research (ICAR), which also provided grant to kick-start the work in South Asia. Led by CIMMYT, the initiative involves researchers from nearly a dozen institutions worldwide.

Chemical controls are costly and potentially harmful to human and environmental health, so protecting crops like wheat with inherent resistance is the smart alternative, but resistance must be genetically complex, combining several genes, to withstand new mutations of the pathogen over time.

Key partners in the new project are the agricultural research organizations of Bangladesh, including the Bangladesh Agricultural Research Institute (BARI), and the Instituto Nacional de Innovación Agropecuaria y Forestal in Bolivia, which will assist with large-scale field experiments to select wheat lines under artificial and natural infections of wheat blast.

Other partners include national and provincial research organizations in India, Nepal and Pakistan, as well as Kansas State University (KSU) and the U.S. Department of Agriculture-Agricultural Research Services (USDA-ARS). The U.S. Agency for International Agricultural Development (USAID) has also supported efforts to kick-start blast control measures, partnerships and upscaling the breeding, testing and seed multiplication of new, high-yielding, disease resistant varieties through its Feed the Future project.

BARI Gom 33 was tested for resistance to wheat blast in field trials in Bolivia and Bangladesh and in greenhouse tests by the USDA-ARS laboratory at Fort Detrick, Maryland. International partnerships are critical for a fast response to wheat blast, according to Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program.

“Worldwide, we’re in the middle of efforts that include blast surveillance and forecasting, studies on the pathogen’s genetics and biology, integrated disease management and seed systems, as well as raising awareness about the disease and training for researchers, extension workers, and farmers,” said Braun.

With over 160 million people, Bangladesh is among the world’s most densely populated countries. Wheat is Bangladesh’s second most important staple food, after rice. The country grows more than 1.3 million tons each year but consumes 4.5 million tons, meaning that imports whose costs exceed $0.7 billion each year comprise more than two-thirds of domestic wheat grain use.

WRC will produce tons of breeder’s seed of BARI Gom 33 each year. This will be used by the Bangladesh Agricultural Development Corporation (BADC) and diverse non-governmental organizations and private companies to produce certified seed for farmers.

“This year WRC will provide seed to BADC for multiplication and the Department of Agricultural Extension will establish on-farm demonstrations of the new variety in blast prone districts during 2017-18,” said Barma.

As an added benefit for the nutrition of wheat consuming households, BARI Gom 33 grain features 30 percent higher levels of zinc than conventional wheat. Zinc is a critical micronutrient missing in the diets of many of the poor throughout South Asia and whose lack particularly harms the health of pregnant women and children under 5 years old.

With funding from HarvestPlus and the CGIAR Research Program on Agriculture for Nutrition, CIMMYT is leading global efforts to breed biofortified wheat with better agronomic and nutritional quality traits. The wheat line used in BARI Gom 33 was developed at CIMMYT, Mexico, through traditional cross-breeding and shared with Bangladesh and other cooperators in South Asia through the Center’s International Wheat Improvement Network, which celebrates 50 years in 2018.

Stable window 1 and 2 (W1W2) funding from CGIAR enabled CIMMYT and partners to react quickly and screen breeding lines in Bolivia, as well as working with KSU to identify sources of wheat blast resistance. The following W1 funders have made wheat blast resistance breeding possible: Australia, the Bill & Melinda Gates Foundation, Canada, France, India, Japan, Korea, New Zeland, Norway, Sweden, Switzerland, the United Kingdom and the World Bank. The following funders also contributed vital W2 funding: Australia, China, the United Kingdom (DFID) and USAID.

Improved wheat helps reduce women’s workload in rural Afghanistan

Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives

by Katelyn Roett, Mike Listman / October 12, 2017

New research shows improved wheat raises the quality of life for men and women across rural communities in Afghanistan.

recent report from Gennovate, a major study about gender and innovation processes in developing country agriculture, found that improved wheat varieties emerged overwhelmingly among the agricultural technologies most favored by both men and women.

In one striking example from Afghanistan, introducing better wheat varieties alone reduced women’s work burden, showing how the uptake of technology – whether seeds or machinery – can improve the quality of life.

“Local varieties are tall and prone to falling, difficult to thresh, and more susceptible to diseases, including smuts and bunts, which requires special cleaning measures, a task normally done by women,” said Rajiv Sharma, a senior wheat scientist at International Maize and Wheat Improvement Center (CIMMYT) and country liaison officer for CIMMYT in Afghanistan. “Such varieties may comprise mixes of several seed types, including seed of weeds. They also give small harvests for which threshing is typically manual, with wooden rollers and animals, picking up sticks, stones, and even animal excrement that greatly complicates cleaning the grain.”

Both women and men spoke favorably about how improved wheat varieties have eased women’s wheat cleaning work.  “Improved seeds can provide clean wheat,” said an 18-year old woman from one of the study’s youth focus groups in Panali, Afghanistan. “Before, we were washing wheat grains and we exposed it to the sun until it dried. Machineries have [also] eased women’s tasks.”

Finally, Sharma noted that bountiful harvests from improved varieties often lead farmers to use mechanical threshing, which further reduces work and ensures cleaner grain for household foods.

Gennovate: A large-scale, qualitative, comparative snapshot

Conceived as a “bottom-up” idea by a small gender research team of CGIAR in 2013, Gennovate involves 11 past and current CGIAR Research Programs. The project collected data from focus groups and interviews involving more than 7,500 rural men and women in 26 countries during 2014-16.

Some 2,500 women and men from 43 rural villages in 8 wheat-producing countries of Africa and Asia participated in community case studies, as part of the CGIAR Research Program on Wheat.

“Across wheat farm settings, both men and women reported a sense of gradual progress,” said Lone Badstue, gender specialist at the CIMMYT and Gennovate project leader. “But women still face huge challenges to access information and resources or have a voice in decision making, even about their own lives.”

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers, who comprise 43 per cent of the farm labor force in developing countries, had the same access to resources as men, agricultural output in 34 developing countries would rise by an estimated average of as high as 4 percent.

“Gender-related restrictions such as limitations on physical mobility or social interactions, as well as reproductive work burden, also constitute key constraints on rural women’s capacity to innovate in agriculture,” Badstue explained.

Gender equity drives innovation

The Gennovate-wheat report identified six “positive outlier communities” where norms are shifting towards more equitable gender relations and helping to foster inclusiveness and agricultural innovation. In those communities, men and women from all economic scales reported significantly higher empowerment and poverty reductions than in the 37 other locations. Greater acceptance of women’s freedom of action, economic activity, and civic and educational participation appears to be a key element.

“In contexts where gender norms are more fluid, new agricultural technologies and practices can become game-changing, increasing economic agency for women and men and rapidly lowering local poverty,” Badstue said.

The contributions and presence of CIMMYT in Afghanistan, which include support for breeding research and training for local scientists, date back several decades. In the last five years, the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL) has used CIMMYT breeding lines to develop and make available to farmers seed of 15 high-yielding, disease resistant wheat varieties.

Read the full report “Gender and Innovation Processes in Wheat-Based Systems” here.

GENNOVATE has been supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation.

 

Afghanistan scientists assess achievements of Australia-funded wheat research

Scientists take readings of rust disease incidence on experimental wheat lines at the Shishambagh research station, Nangarhar, of the Agricultural Research Institute of Afghanistan. Photo: Raqib

With generous funding from the Australian Centre for International Agricultural Research (ACIAR) over the last 15 years, Afghanistan research organizations and the International Maize and Wheat Improvement Center (CIMMYT) have helped supply Afghan farmers with improved varieties and farming practices to boost production of maize and wheat.

“As of 2012, the start of the most recent phase of ACIAR-funded work, Afghanistan partners have developed and released 12 high-yielding and disease resistant bread wheat varieties, as well as 3 varieties of durum wheat, 2 of barley and 3 of maize,” said Rajiv Sharma, a senior wheat scientist at CIMMYT and country liaison officer for CIMMYT in Afghanistan.

Sharma spoke at a workshop, which took place on August 28, with partners from the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL). The event was organized to review accomplishments and facilitate MAIL’s takeover of all activities, when the project ends in October 2018.

“The pedigrees of all new varieties feature contributions from the breeding research of CIMMYT and the International Winter Wheat Improvement Programme based in Turkey, both responsible for introducing more than 9,000 new wheat and maize lines into the country since 2012,” Sharma added. The International Winter Wheat Improvement Programme (IWWIP) is operated by Turkey, CIMMYT, and ICARDA (the International Center for Agricultural Research in the Dry Areas).

Sharma noted that CIMMYT’s presence in Afghanistan, which includes support for breeding research and training for local scientists, dates back several decades and that the latest achievements with ARIA and other partners and ACIAR support include:

  • The delineation of wheat agro-climatic zones.
  • Forecasting climate change impacts on the Afghan wheat crop.
  • Strategizing to raise wheat production.
  • Characterization of Afghanistan’s wheat genetic resource collection.
  • Training abroad for 64 Afghan researchers and in-country for 4,000.
  • Launching research on wheat hybridization.
  • In direct partnership with farmers, more than 1,800 farmer field demonstrations, 80 field days, and introduced machinery like seed drills and mobile seed cleaners.
  • Shared research on and promotion of conservation agriculture, genomic selection, wheat bio-fortification, quality protein maize, climate change, crop insurance and wheat blast resistance and control.

In good years Afghan farmers harvest upwards of 5 million tons of wheat, the country’s number-one food crop, but in some years annual wheat imports exceed 1 million tons to satisfy domestic demand, which exceeds 5.8 million tons.

Multiple partners map avenues to fortify cereal farming

The workshop attracted 45 participants representing ARIA, MAIL, ICARDA, CIMMYT, Michigan State University, ACIAR, the Food and Agriculture Organization of the United Nations (FAO), the Embassy of Australia, and several provincial Directorates of Agriculture, Irrigation & Livestock (DAIL) of Afghanistan.

Among other participants, Mahboobullah Nang, Director of Seed Certification, and Akbar Waziri, Director of the Cereal Department, both from MAIL, offered the Ministry’s support for the continuation of CIMMYT’s longstanding efforts in Afghanistan, particularly in breeding and varietal testing and promotion.

Representing ACIAR, Syed Mousawi commended capacity development activities organized by CIMMYT since the 1970s, which have raised the quality of crop research in Afghanistan and provided a vital link to the global science community over the years.

Participants also recommended extending CIMMYT outreach work, offering training in extension, introducing advanced technologies, and support for and training in varietal maintenance, conservation agriculture, experimental designs, research farm management, data analysis and data management.

2016 ICARDA annual report–Enhancing resilience, helping dryland communities to thrive

The hottest on record, 2016 also marked another year that ICARDA has been on the frontlines of agricultural sustainability and innovation. The 2016 annual report highlights the organization’s efforts to provide farmers throughout the drylands with the latest tools, resources, and training to ensure that their livelihoods — and food security — are resilient to the increasing onslaught of climate change.

Click here to view or download a copy of the full report.

On-line: The 2016 WHEAT annual report

The challenge for WHEAT is no less than to raise the productivity, affordability and quality of wheat and wheat-based foods for 2.5 billion resource-poor consumers in 89 countries today, as well as meeting rising demand from a world population expected to surpass 9 billion by mid-century.

Click here to see how 2016 activities and advances in science and partnerships are empowering farmers and catalyzing wheat value chains, amid political instability, fragile food markets and warmer and erratic weather.

CIMMYT 2016 annual report ‘Maize and wheat for future climates’

The 2016 CIMMYT Annual Report details the strong partnerships and science through which CIMMYT creates and shares innovations for farmers to grow more, earn more and reduce environmental impacts, now and in the future. Highlights include:

  • Maize and wheat breeding speeds up to equip farmers with varieties for dryer, hotter climates, and to resist evolving pathogens and pests.
  • Scientists refute trendy claims disparaging wheat and promote the nutritional benefits of this vital food grain.
  • Growing partnerships, including the joint launch with Henan Agricultural University, China, of a new maize and wheat research center.
  • Dramatically expanded maize seed markets for Mexican farmers.
  • Use of zero tillage and other sustainable agriculture practices in southern Africa and South Asia.

In 2016, CIMMYT marked and celebrated 50 years of applying excellence in maize and wheat science to improve the livelihoods of the disadvantaged. With the commitment and continuous support of dedicated staff, partners and donors, the Center will continue contributing to a food- and nutrition-secure future for all.

Click here TO VIEW OR DOWNLOAD A COPY OF THE REPORT.