Posts Tagged ‘ICARDA’

ICARDA researchers receive Olam Prize for innovation in food security

MONTPELLIER, France (June 5, 2017) – The 2017 Olam Prize for Innovation in Food Security was awarded to the “Adapting durum wheat varieties to the Senegal Basin for food security” project led by Filippo Maria Youssef Bassi, durum wheat breeder at the International Center for Agricultural Research in the Dry Area (ICARDA).

Moving zinc-enriched wheat into the mainstream

By Matthew O’Leary/CIMMYT

EL BATAN, Mexico (May 30,2017)– In an effort to stamp out hidden hunger, scientists are calling for support to make zinc-biofortification a core trait in the world’s largest wheat breeding program.

At least 2 billion people around the world suffer from micronutrient deficiency, or hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

Zinc deficiency remains a crucial health issue in sub-Saharan Africa and South Asia. As a key nutrient in red meat, zinc deficiency is prevalent in areas of high cereal and low animal food consumption.

Strengthening African women’s participation in wheat farming

By Dina Najjar/ICARDA

Gender inequality is a recurring feature of many agricultural production systems across the wheat-growing regions of Africa, and women farmers often lack access to credit, land, and other inputs. The result: limited adoption of new innovations, low productivity and income, and a missed opportunity to enhance household food security and prosperity.

2015 ICARDA annual report: Towards Dynamic Drylands

icarda-2015-cover-mr

By Mike Listman/CIMMYT

BEIRUT, Lebanon (October 7, 2016) – ICARDA’s work in the severely food-and water-stressed Middle Eastern and North African countries puts it in a strong position to contribute to stability in the region, addressing the root causes of the migration—food insecurity, unemployment, drought and environmental degradation.

Center outcomes in 2015 add to the body of evidence that demonstrates a clear potential and path towards productive and climate-resilient livelihoods for smallholders and livestock producers – a road towards ‘Dynamic Drylands’ – the theme of ICARDA’s 2015 Annual Report, which we proudly present.

To read the report on line or download a pdf copy, click here.

Available Now: The 2015 WHEAT Annual Report

By Katie Lutz/CIMMYT

EL BATAN, Mexico (August 24,2016)- High returns to global wheat research Building on more than a half-century of proven impacts, the global wheat improvement system led by CGIAR centers continues to be the chief source for wheat farmers in Africa, Asia and Latin America of critical traits such as high yields, disease resistance and enhanced nutrition and quality.

A recently-published study found that CGIAR-derived varieties – nearly all traceable to CIMMYT and ICARDA breeding programs – cover more than 100 million of 220 million hectares worldwide and bring economic benefits of as much as $3.1 billion each year. To achieve impacts in wheat agri-food systems, CIMMYT and ICARDA depend on national partnerships in over 100 countries and critical support from CGIAR Fund Donors and other contributors, whom we sincerely thank on behalf of the world’s wheat farmers and consumers.

Wheat global impacts 1994-2014: Published report available

Cover_Page_01By Mike Listman/CIMMYT

EL BATAN, Mexico (April 8,2016)- Just published by CIMMYT and WHEAT, the report “Impacts of International Wheat Improvement Research 1994-2014,” shows that varieties on nearly half the world’s wheat lands overall — as well as 70 to 80 percent of all wheat varieties released in our primary target regions (South Asia, Central and West Asia and North Africa) — are CGIAR related. Other key findings include the following:

  • Fully 63 percent of the varieties featured CGIAR genetic contributions. This means they are either direct releases of breeding lines from CIMMYT and ICARDA or have a CGIAR line as a parent or more distant ancestor.
  • Yearly economic benefits of CGIAR wheat breeding research ranged from $2.2 to $3.1 billion (in 2010 dollars), and resulted from annual funding of just $30 million, representing a benefit-cost ratio of between 73:1 and 103:1, even by conservative estimates.
  • In South Asia, for example, which is home to more than 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat a year, 92 percent of the varieties carried CGIAR ancestry.

Global science team rescues rare wheat seed from the Fertile Crescent

By Katie Lutz/CIMMYT

37

EL BATAN, Mexico(February 23, 2016)- With Syria torn apart by civil war, a team of scientists in Mexico and Morocco are rushing to save a vital sample of wheat’s ancient and massive genetic diversity, sealed in seed collections of an international research center formerly based in Aleppo, but forced to leave during 2012-13.

The researchers are restoring and genetically characterizing more than 30,000 unique seed collections of wheat from the Syrian genebank of the International Center for Agricultural Research in the Dry Areas (ICARDA), which has relocated its headquarters to Beirut, Lebanon, and backed up its 150,000 collections of barley, fava bean, lentil, and wheat seed with partners and in the Global Seed Vault at Svalbard, Norway.

In March 2015, scientists at ICARDA were awarded The Gregor Mendel Foundation Innovation Prize for their courage in securing and preserving their seed collections at Svalbard, by continuing work and keeping the genebank operational in Syria even amidst war.

“With war raging in Syria, this project is incredibly important,” said Carolina Sansaloni, genotyping and DNA sequencing specialist at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), which is leading work to analyze the samples and locate genes for breeding high-yield, climate resilient wheats. “It would be amazing if we could be just a small part of reintroducing varieties that have been lost in war-torn regions.”

Mobilizing seed bank diversity for wheat improvement

During centrifugation, the emulsion for DNA extraction separates into two distinct phases. Chloroform:octanol is more dense than water solutions, so it forms the lower (green) layer. It is also more chemically attractive to molecules such as proteins and polysaccharides. These are thus separated out from the DNA, which is contained in the upper aqueous phase. This clear solution is carefully transferred to fresh centrifuge tubes using a pipette. Photo credit: CIMMYT. See the "DNA extraction" set that this photo is part of for more information and images.By Mike Listman/CIMMYT

EL BATAN, Mexico (January 12, 2016)-A recent study by a global team of researchers from CIMMYT, ICARDA, and the Global Crop Diversity Trust has uncovered a treasure trove of wheat genetic diversity to address drought and rising temperatures—constraints that cut harvests for millions of farmers worldwide and which are growing more severe with each passing year.

The team studied the molecular diversity of 1,423 spring bread wheat accessions that represent major global production environments, using high quality genotyping-by-sequencing (GBS) loci and gene-based markers for various adaptive and quality traits.

They discovered thousands of new DNA marker variations in landraces known to be adapted to drought (1,273 novel GBS SNPs) and heat (4,473 novel GBS SNPs), opening the potential to enrich elite breeding lines with novel alleles for drought and heat tolerance. New allelic variation for vernalization and glutenin genes was also identified in 47 landraces from Afghanistan, India, Iran, Iraq, Pakistan, Turkmenistan, and Uzbekistan.

Mean diversity index (DI) estimates revealed that synthetic hexaploids—created by crossing wheat’s wild grass ancestor Aegilops tauschii with durum wheat—are genetically more diverse than elite lines (DI = 0.267) or landraces (DI = 0.245). Lines derived from such crosses are already playing an increasingly important role in global and national breeding programs.

Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is key to sustaining crop genetic improvement.  The results have already been used to select 200 diverse germplasm bank accessions for pre-breeding and allele mining of candidate genes associated with drought and heat stress tolerance, thus channeling novel variation into breeding pipelines.

Published in the paper Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement, the research is part of CIMMYT’s ongoing Seeds of Discovery project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.

Kenya wheat breeders win the 2015 BGRI Gene Stewardship Award

By Julie Mollins/CIMMYT

NAIROBI, Kenya (October 8, 2015)- Plant pathologist Ruth Wanyera and wheat breeders Godwin Macharia and Peter Njau of the Kenya Agriculture and Livestock Research Organization (KALRO) received the 2015 Gene Stewardship Award at the Borlaug Global Rust Initiative Workshop (BGRI) in Sydney, Australia.

“The KALRO team has done an outstanding job – their work has had significant global impact by accelerating the capacity of developing countries to protect themselves against this swift-moving and devastating disease,” said Sridhar Bhavani, a wheat breeder who leads the International Maize and Wheat Improvement Center (CIMMYT) stem-rust screening nurseries in East Africa and nominated the team for the award.

Available Now: The WHEAT Wire!

wheatwire2.2EL BATAN, Mexico ( July 6, 2015)- The WHEAT Wire is a quarterly newsletter designed to keep you informed of important events and outcomes in WHEAT, with a special focus on our national and international research and development partners.

This volume features information regarding the next generation of CRPs, the results of the WHEAT Independent Evaluation and updates from CIMMYT and ICARDA. Read more in latest version of The WHEAT Wire.