Posts Tagged ‘livelihoods’

Improved wheat helps reduce women’s workload in rural Afghanistan

Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives

by Katelyn Roett, Mike Listman / October 12, 2017

New research shows improved wheat raises the quality of life for men and women across rural communities in Afghanistan.

recent report from Gennovate, a major study about gender and innovation processes in developing country agriculture, found that improved wheat varieties emerged overwhelmingly among the agricultural technologies most favored by both men and women.

In one striking example from Afghanistan, introducing better wheat varieties alone reduced women’s work burden, showing how the uptake of technology – whether seeds or machinery – can improve the quality of life.

“Local varieties are tall and prone to falling, difficult to thresh, and more susceptible to diseases, including smuts and bunts, which requires special cleaning measures, a task normally done by women,” said Rajiv Sharma, a senior wheat scientist at International Maize and Wheat Improvement Center (CIMMYT) and country liaison officer for CIMMYT in Afghanistan. “Such varieties may comprise mixes of several seed types, including seed of weeds. They also give small harvests for which threshing is typically manual, with wooden rollers and animals, picking up sticks, stones, and even animal excrement that greatly complicates cleaning the grain.”

Both women and men spoke favorably about how improved wheat varieties have eased women’s wheat cleaning work.  “Improved seeds can provide clean wheat,” said an 18-year old woman from one of the study’s youth focus groups in Panali, Afghanistan. “Before, we were washing wheat grains and we exposed it to the sun until it dried. Machineries have [also] eased women’s tasks.”

Finally, Sharma noted that bountiful harvests from improved varieties often lead farmers to use mechanical threshing, which further reduces work and ensures cleaner grain for household foods.

Gennovate: A large-scale, qualitative, comparative snapshot

Conceived as a “bottom-up” idea by a small gender research team of CGIAR in 2013, Gennovate involves 11 past and current CGIAR Research Programs. The project collected data from focus groups and interviews involving more than 7,500 rural men and women in 26 countries during 2014-16.

Some 2,500 women and men from 43 rural villages in 8 wheat-producing countries of Africa and Asia participated in community case studies, as part of the CGIAR Research Program on Wheat.

“Across wheat farm settings, both men and women reported a sense of gradual progress,” said Lone Badstue, gender specialist at the CIMMYT and Gennovate project leader. “But women still face huge challenges to access information and resources or have a voice in decision making, even about their own lives.”

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers, who comprise 43 per cent of the farm labor force in developing countries, had the same access to resources as men, agricultural output in 34 developing countries would rise by an estimated average of as high as 4 percent.

“Gender-related restrictions such as limitations on physical mobility or social interactions, as well as reproductive work burden, also constitute key constraints on rural women’s capacity to innovate in agriculture,” Badstue explained.

Gender equity drives innovation

The Gennovate-wheat report identified six “positive outlier communities” where norms are shifting towards more equitable gender relations and helping to foster inclusiveness and agricultural innovation. In those communities, men and women from all economic scales reported significantly higher empowerment and poverty reductions than in the 37 other locations. Greater acceptance of women’s freedom of action, economic activity, and civic and educational participation appears to be a key element.

“In contexts where gender norms are more fluid, new agricultural technologies and practices can become game-changing, increasing economic agency for women and men and rapidly lowering local poverty,” Badstue said.

The contributions and presence of CIMMYT in Afghanistan, which include support for breeding research and training for local scientists, date back several decades. In the last five years, the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL) has used CIMMYT breeding lines to develop and make available to farmers seed of 15 high-yielding, disease resistant wheat varieties.

Read the full report “Gender and Innovation Processes in Wheat-Based Systems” here.

GENNOVATE has been supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation.

 

Afghanistan scientists assess achievements of Australia-funded wheat research

Scientists take readings of rust disease incidence on experimental wheat lines at the Shishambagh research station, Nangarhar, of the Agricultural Research Institute of Afghanistan. Photo: Raqib

With generous funding from the Australian Centre for International Agricultural Research (ACIAR) over the last 15 years, Afghanistan research organizations and the International Maize and Wheat Improvement Center (CIMMYT) have helped supply Afghan farmers with improved varieties and farming practices to boost production of maize and wheat.

“As of 2012, the start of the most recent phase of ACIAR-funded work, Afghanistan partners have developed and released 12 high-yielding and disease resistant bread wheat varieties, as well as 3 varieties of durum wheat, 2 of barley and 3 of maize,” said Rajiv Sharma, a senior wheat scientist at CIMMYT and country liaison officer for CIMMYT in Afghanistan.

Sharma spoke at a workshop, which took place on August 28, with partners from the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL). The event was organized to review accomplishments and facilitate MAIL’s takeover of all activities, when the project ends in October 2018.

“The pedigrees of all new varieties feature contributions from the breeding research of CIMMYT and the International Winter Wheat Improvement Programme based in Turkey, both responsible for introducing more than 9,000 new wheat and maize lines into the country since 2012,” Sharma added. The International Winter Wheat Improvement Programme (IWWIP) is operated by Turkey, CIMMYT, and ICARDA (the International Center for Agricultural Research in the Dry Areas).

Sharma noted that CIMMYT’s presence in Afghanistan, which includes support for breeding research and training for local scientists, dates back several decades and that the latest achievements with ARIA and other partners and ACIAR support include:

  • The delineation of wheat agro-climatic zones.
  • Forecasting climate change impacts on the Afghan wheat crop.
  • Strategizing to raise wheat production.
  • Characterization of Afghanistan’s wheat genetic resource collection.
  • Training abroad for 64 Afghan researchers and in-country for 4,000.
  • Launching research on wheat hybridization.
  • In direct partnership with farmers, more than 1,800 farmer field demonstrations, 80 field days, and introduced machinery like seed drills and mobile seed cleaners.
  • Shared research on and promotion of conservation agriculture, genomic selection, wheat bio-fortification, quality protein maize, climate change, crop insurance and wheat blast resistance and control.

In good years Afghan farmers harvest upwards of 5 million tons of wheat, the country’s number-one food crop, but in some years annual wheat imports exceed 1 million tons to satisfy domestic demand, which exceeds 5.8 million tons.

Multiple partners map avenues to fortify cereal farming

The workshop attracted 45 participants representing ARIA, MAIL, ICARDA, CIMMYT, Michigan State University, ACIAR, the Food and Agriculture Organization of the United Nations (FAO), the Embassy of Australia, and several provincial Directorates of Agriculture, Irrigation & Livestock (DAIL) of Afghanistan.

Among other participants, Mahboobullah Nang, Director of Seed Certification, and Akbar Waziri, Director of the Cereal Department, both from MAIL, offered the Ministry’s support for the continuation of CIMMYT’s longstanding efforts in Afghanistan, particularly in breeding and varietal testing and promotion.

Representing ACIAR, Syed Mousawi commended capacity development activities organized by CIMMYT since the 1970s, which have raised the quality of crop research in Afghanistan and provided a vital link to the global science community over the years.

Participants also recommended extending CIMMYT outreach work, offering training in extension, introducing advanced technologies, and support for and training in varietal maintenance, conservation agriculture, experimental designs, research farm management, data analysis and data management.

2016 ICARDA annual report–Enhancing resilience, helping dryland communities to thrive

The hottest on record, 2016 also marked another year that ICARDA has been on the frontlines of agricultural sustainability and innovation. The 2016 annual report highlights the organization’s efforts to provide farmers throughout the drylands with the latest tools, resources, and training to ensure that their livelihoods — and food security — are resilient to the increasing onslaught of climate change.

Click here to view or download a copy of the full report.

Scientists in Afghanistan set new program to raise wheat harvests

KABUL, Afghanistan (February 17,2017)-  Inadequate access to new disease-resistant varieties and short supplies of certified seed are holding back wheat output and contributing to rising food insecurity in Afghanistan, according to more than 50 national and international wheat experts.

Wheat scientists and policymakers discussed challenges to the country’s most-produced crop during a two-day meeting at Agricultural Research Institute of Afghanistan (ARIA) headquarters in Kabul, as part of the 5th Annual Wheat Researchers’ Workshop in November 2016. They took stock of constraints to the 2017 winter wheat crop, including dry autumn weather and rapidly-evolving strains of the deadly wheat disease known as yellow rust.

Available Now: The 2015 WHEAT Annual Report

By Katie Lutz/CIMMYT

EL BATAN, Mexico (August 24,2016)- High returns to global wheat research Building on more than a half-century of proven impacts, the global wheat improvement system led by CGIAR centers continues to be the chief source for wheat farmers in Africa, Asia and Latin America of critical traits such as high yields, disease resistance and enhanced nutrition and quality.

A recently-published study found that CGIAR-derived varieties – nearly all traceable to CIMMYT and ICARDA breeding programs – cover more than 100 million of 220 million hectares worldwide and bring economic benefits of as much as $3.1 billion each year. To achieve impacts in wheat agri-food systems, CIMMYT and ICARDA depend on national partnerships in over 100 countries and critical support from CGIAR Fund Donors and other contributors, whom we sincerely thank on behalf of the world’s wheat farmers and consumers.

NAAS fellow M.L. Jat talks about climate change, sustainable agriculture

By Katelyn Roett/CIMMYT

Haryana-2015-cropped

M.L. Jat observing wheat germination in a zero-till field in Haryana, India. Photo: DK Bishnoi/CIMMYT

EL BATAN, Mexico (December 18,2016)- CIMMYT senior scientist M.L. Jat has received India’s National Academy of Agricultural Sciences (NAAS) fellowship in Natural Resource Management for his “outstanding contributions in developing and scaling” conservation agriculture-based management technologies for predominant cereal-based cropping systems in South Asia.

Jat’s research on conservation agriculture (CA) – sustainable and profitable agriculture that improves livelihoods of farmers via minimal soil disturbance, permanent soil cover, and crop rotations – has guided improvements in soil and environmental health throughout South Asia. His work has led to policy-level impacts in implementing CA practices such as precision land leveling, zero tillage, direct seeding, and crop residue management, and he has played a key role in building the capacity of CA stakeholders throughout the region.

Sustainable innovation, including climate-smart agriculture, were a major theme at the COP21 climate talks .

Clone of magic wheat disease-resistance gene sheds light on new defense mechanism

By Mike Listman/CIMMYT

EL BATAN, Mexico (November 13, 2015)- Scientists have sequenced and described a gene that can help wheat to resist four serious fungal diseases, potentially saving billions of dollars in yearly grain

APR-resistance-mr

A resistant wheat line surrounded by susceptible lines infected by rust disease (photo: CIMMYT/Julio Huerta).

losses and reducing the need for farmers to use costly fungicides, once the gene is bred into high-yielding varieties.

A global research team isolated the wheat gene Lr67, revealing how it hampers fungal pathogen growth through a novel mechanism.

The study, which was published in Nature Genetics on 9 November, involved scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Chinese Academy of Agricultural Sciences (CAAS), Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP), the Norwegian University of Life Sciences and scientists from Australia, including the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the University of Newcastle, and the University of Sydney.

According to Ravi Singh, CIMMYT distinguished scientist, wheat breeder, and co-author of the new study, Lr67 belongs to a group of three currently-known “magic” genes that help wheat to resist all three wheat rusts and powdery mildew, a disease that attacks wheat in humid temperate regions. The genes act in different ways but all slow — rather than totally stopping — disease development. When combined with other such partial resistance genes through breeding, they provide a strong, longer-lasting protection for plants, boosting food security.

To read more about Lr67‘s cloning and resistance type, click here.

WHEAT and CIMMYT Remember Vital Legacy of Gender Specialist Paula Kantor

By Mike Listman/CIMMYT

EL AIP MWG_ Paula_2-cropBATAN, Mexico (May 15,2015) CIMMYT is sad to announce the tragic death of our friend and respected colleague, gender and development specialist Paula Kantor.

Paula died on May 13, in the aftermath of an attack on the hotel where she was staying in Kabul, Afghanistan.

“We extend our deepest condolences to her family, friends and colleagues,” said Thomas Lumpkin, CIMMYT’s director general.

“Paula’s desire to help people and make lasting change in their lives often led her into challenging settings. Her dedication and bravery was much admired by those who knew her and she leaves a lasting legacy upon which future research on gender and food security should build.”

Click here to read more about Paula’s exciting and valuable life and legacy.