Posts Tagged ‘livelihoods’

Scientists in Afghanistan set new program to raise wheat harvests

February 17, 2017

Photo: Masud Sultan/CIMMYT

Photo: Masud Sultan/CIMMYT

KABUL (CIMMYT) – Inadequate access to new disease-resistant varieties and short supplies of certified seed are holding back wheat output and contributing to rising food insecurity in Afghanistan, according to more than 50 national and international wheat experts.

Wheat scientists and policymakers discussed challenges to the country’s most-produced crop during a two-day meeting at Agricultural Research Institute of Afghanistan (ARIA) headquarters in Kabul, as part of the 5th Annual Wheat Researchers’ Workshop in November 2016. They took stock of constraints to the 2017 winter wheat crop, including dry autumn weather and rapidly-evolving strains of the deadly wheat disease known as yellow rust.

“Old wheat varieties are falling prey to new races of rust,” said Qudrat Soofizada, director for Adaptive Research at ARIA, pointing out that the country’s 2016 wheat harvest had remained below 5 million tons for the second year in a row, after a record harvest of more than 5.3 million tons in 2014.

The workshop was attended by 51 participants belonging to several ARIA research stations and experts from the International Maize and Wheat Improvement Center (CIMMYT), the Australian Center for International Agricultural Research (ACIAR) and World Bank’s Afghanistan Agriculture Input Project (AAIP).

Afghanistan has been importing around 2.5 million tons of cereal grain — mainly wheat — in the last two years, with most of that coming from Kazakhstan and Pakistan, according to recent reports from the Food and Agriculture Organization (FAO) of the United Nations.

“Most wheat farmers save grain from prior harvests and use that as seed, rather than sowing certified seed of newer, high-yielding and disease resistant varieties,” said Rajiv Sharma, CIMMYT senior scientist and representative at the center’s office in Afghanistan. “This is holding back the country’s wheat productivity potential.”

Sharma explained that CIMMYT has been supporting efforts of Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) to boost supplies of certified seed of improved varieties and of critical inputs like fertilizer.

“CIMMYT has worked with Afghanistan wheat scientists for decades and more than 90 percent of the country’s certified wheat varieties contain genetic contributions from our global breeding efforts,” Sharma explained.

Since 2012, the center has organised more than 1,700 wheat variety demonstrations on farmers’ fields and trained over 1,000 farmers. CIMMYT scientists are also conducting field and DNA analyses of Afghan wheats, which will allow faster and more effective breeding.

The FAO reports showed that the government, FAO and diverse non-governmental organizations had distributed some 10,000 tons of certified seed of improved wheat varieties for the current planting season. With that amount of seed farmers can sow around 67,000 hectares, but this is only some 3 percent of the country’s approximately 2.5 million-hectare wheat area.

“We have been informing the National Seed Board about older varieties that are susceptible to the rusts,” said Ghiasudin Ghanizada, head of wheat pathology at MAIL/ARIA, Kabul, adding that efforts were being made to take such varieties out of the seed supply chain.

After discussions, Ghanizada and MAIL/ARIA associates M. Hashim Azmatyar and Abdul Latif Rasekh presented the technical program for breeding, pathology and agronomy activities to end 2016 and start off 2017.

Zubair Omid, hub coordinator, CIMMYT-Afghanistan, presented results of wheat farmer field demonstrations, informing that grain yields in the demonstrations ranged from 2.8 to 7.6 tons per hectare.

T.S. Pakbin, former director of ARIA, inaugurated the meeting and highlighted CIMMYT contributions to Afghanistan’s wheat improvement work. M.Q. Obaidi, director of ARIA, thanked participants for traveling long distances to attend, despite security concerns. Nabi Hashimi, research officer, CIMMYT-Afghanistan, welcomed participants on behalf of CIMMYT and wished them good luck for the 2016-17 season.

Wheat breeding trial results were presented by Zamarai Ahmadzada from Darulaman Research Station, Kabul; Aziz Osmani from Urad Khan Research Station, Herat; Shakib Attaye from Shisham Bagh Research Station, Nangarhar; Abdul Manan from Bolan Research Station, Helmand; Said Bahram from Central Farm, Kunduz; Najibullah Jahid from Kohkaran Research Station, Kandahar; and Sarwar Aryan from Mulla Ghulam Research Station, Bamyan.

Agronomy results from the research stations of Badakhshan, Herat, Kabul, Kunduz, Helmand and Bamyan were also presented and summarized by Abdul Latif Rasikh, head of Wheat Agronomy, ARIA headquarters, Badam Bagh, Kabul

Available Now: The 2015 WHEAT Annual Report

High returns to global wheat research

Building on more than a half-century of proven impacts, the global wheat improvement system led by CGIAR centers continues to be the chief source for wheat farmers in Africa, Asia and Latin America of critical traits such as high yields, disease resistance and enhanced nutrition and quality.

A recently-published study found that CGIAR-derived varieties – nearly all traceable to CIMMYT and ICARDA breeding programs – cover more than 100 million of 220 million hectares worldwide and bring economic benefits of as much as $3.1 billion each year. To achieve impacts in wheat agri-food systems, CIMMYT and ICARDA depend on national partnerships in over 100 countries and critical support from CGIAR Fund Donors and other contributors, whom we sincerely thank on behalf of the world’s wheat farmers and consumers.

A critical juncture

Consumers in particular are benefiting from current low wheat grain prices, thanks in part to the success of WHEAT, but many studies foreshadow a future of rising demand and food price instability that could wreak havoc, particularly among poor consumers.

The unfolding scenario implies a yearly growth in wheat demand of 1.4 percent to 2030, at constant prices. But yield gains in wheat remain below 1 percent per year over the last decade, mainly because the easiest gains in wheat have already been achieved and more dramatic progress will require new approaches.

To ensure the affordable availability of wheat – a food staple that provides around 20 percent of protein and calories consumed worldwide – researchers need to expand field testing for disease resistance and heat and drought tolerance and to significantly raise wheat’s genetic yield potential.

Ethiopia 2015

Photo: Peter Lowe

For their part, during 2015 CIMMYT and ICARDA made excellent progress in merging their wheat programs to ensure partners and farmers’ quick and effective access to high-yielding, climate-resilient breeding lines, productive and resource-conserving cropping practices and knowledge needed to face the future of wheat, the vital grain of civilization and food security.

Hans-Joachim Braun

Director, CGIAR Research Program on Wheat

Read the full version of the 2015 WHEAT Annual Report here.

NAAS fellow M.L. Jat talks about climate change, sustainable agriculture

Katelyn Roett

Haryana-2015-cropped

M.L. Jat observing wheat germination in a zero-till field in Haryana, India (credit: DK Bishnoi/CIMMYT).

CIMMYT senior scientist M.L. Jat has received India’s National Academy of Agricultural Sciences (NAAS) fellowship in Natural Resource Management for his “outstanding contributions in developing and scaling” conservation agriculture-based management technologies for predominant cereal-based cropping systems in South Asia.

Jat’s research on conservation agriculture (CA) – sustainable and profitable agriculture that improves livelihoods of farmers via minimal soil disturbance, permanent soil cover, and crop rotations – has guided improvements in soil and environmental health throughout South Asia. His work has led to policy-level impacts in implementing CA practices such as precision land leveling, zero tillage, direct seeding, and crop residue management, and he has played a key role in building the capacity of CA stakeholders throughout the region.

Sustainable innovation, including climate-smart agriculture, were a major theme at the COP21 climate talks .

What are the major threats global climate change poses to South Asian agriculture?
Jat: South Asia is one of the most vulnerable regions in the world to climate change. With a growing population of 1.6 billion people, the region hosts 40% of the world’s poor and malnourished on just 2.4% of the world’s land. Agriculture makes up over half of the region’s livelihoods, so warmer winters and extreme, erratic weather events such as droughts and floods have an even greater impact. Higher global temperatures will continue to add extreme pressure to finite land and other natural resources, threatening food security and livelihoods of smallholder farmers and the urban poor.

How does CA mitigate and help farmers adapt to climate change?
Jat:
In South Asia, climate change is likely to reduce agricultural production 10‐50% by 2050 and beyond, so adaptation measures are needed now. Climate change has complex and local impacts, requiring scalable solutions to likewise be locally-adapted. Climate-smart agriculture practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, according to ample data on CA management practices throughout the region.

What future developments are needed to help South Asian farmers adapt to climate change?
Jat: Targeting and access to CA sustainable intensification technologies, knowledge, and training—such as precision water and nutrient management or mechanized CA solutions specific to a farmer’s unique landscape—will be critical to cope with emerging risks of climate variability. Participatory and community-based approaches will be critical for scaled impact as well. For example, the climate smart village concept allows rural youth and women to be empowered not only by becoming CA practitioners but also by serving as knowledge providers to the local community, making them important actors in generating employment and scaling CA and other climate-smart practices. Where do you see your research heading in the next 10-15 years? Now that there are clear benefits of CA and CSA across a diversity of farms at a regional level, as well as increased awareness by stakeholders of potential challenges of resource degradation and food security in the face of climate change, scaling up CA and CSA interventions will be a priority. For example, the Government of Haryana in India has already initiated a program to introduce CSA in 500 climate smart villages. Thanks to this initiative, CA and CSA will benefit 10 million farms across the region in the next 10-15 years.


Climate-Smart Villages are a community-based approach to adaptation and mitigation of climate change for villages in high-risk areas, which will likely suffer most from a changing climate. Created by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the project began in 2011 with 15 climate-smart villages in West Africa, East Africa and South Asia, and is expanding to Latin America and Southeast Asia. CIMMYT is leading the CCAFS-CSV project in South Asia.


 

Clone of magic wheat disease-resistance gene sheds light on new defense mechanism

APR-resistance-mr

A resistant wheat line surrounded by susceptible lines infected by rust disease (photo: CIMMYT/Julio Huerta).

Mike Listman

Scientists have sequenced and described a gene that can help wheat to resist four serious fungal diseases, potentially saving billions of dollars in yearly grain losses and reducing the need for farmers to use costly fungicides, once the gene is bred into high-yielding varieties.

A global research team isolated the wheat gene Lr67, revealing how it hampers fungal pathogen growth through a novel mechanism.

The study, which was published in Nature Genetics on 9 November, involved scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Chinese Academy of Agricultural Sciences (CAAS), Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP), the Norwegian University of Life Sciences and scientists from Australia, including the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the University of Newcastle, and the University of Sydney.

According to Ravi Singh, CIMMYT distinguished scientist, wheat breeder, and co-author of the new study, Lr67 belongs to a group of three currently-known “magic” genes that help wheat to resist all three wheat rusts and powdery mildew, a disease that attacks wheat in humid temperate regions. The genes act in different ways but all slow — rather than totally stopping — disease development. When combined with other such partial resistance genes through breeding, they provide a strong, longer-lasting protection for plants, boosting food security.

To read more about Lr67‘s cloning and resistance type, click here.

WHEAT and CIMMYT Remember Vital Legacy of Gender Specialist Paula Kantor

EL AIP MWG_ Paula_2-cropBATAN, Mexico (CIMMYT) CIMMYT is sad to announce the tragic death of our friend and respected colleague, gender and development specialist Paula Kantor.

Paula died on May 13, in the aftermath of an attack on the hotel where she was staying in Kabul, Afghanistan.

“We extend our deepest condolences to her family, friends and colleagues,” said Thomas Lumpkin, CIMMYT’s director general.

“Paula’s desire to help people and make lasting change in their lives often led her into challenging settings. Her dedication and bravery was much admired by those who knew her and she leaves a lasting legacy upon which future research on gender and food security should build.”

Click here to read more about Paula’s exciting and valuable life and legacy.