Posts Tagged ‘stem rust’

Young women scientists who will galvanize global wheat research

By Laura Strugnell and Mike Listman

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award pose in front of the statue of the late Nobel Peace laureate, Dr. Norman E. Borlaug. Included in the photo are Amor Yahyaoui, CIMMYT wheat training coordinator (far left), Jeanie Borlaug Laube (center, blue blouse), and Maricelis Acevedo, Associate Director for Science, the Delivering Genetic Gain in Wheat Project (to the right of Jeanie Borlaug Laube). Photo: CIMMYT/Mike Listman

CIUDAD OBREGÓN, Mexico (CIMMYT) – As more than 200 wheat science and food specialists from 34 countries gathered in northwestern Mexico to address threats to global nutrition and food security, 9 outstanding young women wheat scientists among them showed that this effort will be strengthened by diversity.

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award joined an on-going wheat research training course organized by the International Maize and Wheat Improvement Center (CIMMYT), 21-23 March.

“As my father used to say, you are the future,” said Jeanie Borlaug Laube, daughter of the late Nobel Peace Prize laureate, Dr. Norman E. Borlaug, and mentor of many young agricultural scientists. Speaking to the WIT recipients, she said, “You are ahead of the game compared to other scientists your age.”

Established in 2010 as part of the Delivering Genetic Gain in Wheat (DGGW) project led by Cornell University, the WIT program has provided professional development opportunities for 44 young women researchers in wheat from more than 20 countries.

The award is given annually to as many as five early science-career women, ranging from advanced undergraduates to recent doctoral graduates and postdoctoral fellows. Selection is based on a scientific abstract and statement of intent, along with evidence of commitment to agricultural development and leadership potential.

Women who will change their professions and the world

Weizhen Liu. Photo: WIT files

Weizhen Liu, a 2017 WIT recipient and postdoctoral researcher at Cornell University, is applying genome-wide association mapping and DNA marker technology to enhance genetic resistance in tetraploid and bread wheat to stripe rust, a major global disease of wheat that is quickly spreading and becoming more virulent.

“I am eager to join and devote myself to improving wheat yields by fighting wheat rusts,” said Liu, who received her bachelors in biotechnology from Nanjing Agricultural University, China, in 2011, and a doctorate from Washington State University in 2016. “Through WIT, I can share my research with other scientists, receive professional feedback, and build international collaboration.”

Mitaly Bansal, a 2016 WIT award winner, currently works as a Research Associate at Punjab Agricultural University, India. She did her PhD research in a collaborative project involving Punjab Agricultural University and the John Innes Centre, UK, to deploy stripe and leaf rust resistance genes from non-progenitor wild wheat in commercial cultivars.

Mitaly Bansal. Photo: WIT files

“I would like to work someday in a position of public policy in India,” said Bansal, who received the Monsanto Beachell-Borlaug scholarship in 2013. “That is where I could have the influence to change things that needed changing.”

Networking in the cradle of wheat’s “Green Revolution”

In addition to joining CIMMYT training for a week, WIT recipients will attend the annual Borlaug Global Rust Initiative (BGRI) technical workshop, to be held this year in Marrakech, Morocco, from 14 to 17 April, and where the 2018 WIT winners will be announced.

The CIMMYT training sessions took place at the Norman Borlaug Experiment Station (CENEB), an irrigated desert location in Sonora State, northwestern Mexico, and coincided with CIMMYT’s 2018 “Visitors’ Week,” which took place from 19 to 23 March.

An annual gathering organized by the CIMMYT global wheat program at CENEB, Visitors’ Week typically draws hundreds of experts from the worldwide wheat research and development community. Participants share innovations and news on critical issues, such as the rising threat of the rust diseases or changing climates in key wheat farmlands.

Through her interaction with Visitors’ Week peers, Liu said she was impressed by the extensive partnering among experts from so many countries. “I realized that one of the most important things to fight world hunger is collaboration; no one can solve food insecurity, malnutrition, and climate change issues all by himself.”

A strong proponent and practitioner of collaboration, Norman E. Borlaug worked with Sonora farmers in the 1940-50s as part of a joint Rockefeller Foundation-Mexican government program that, among other outputs, generated high-yielding, disease-resistant wheat varieties. After bringing wheat self-sufficiency to Mexico, the varieties were adopted in South Asia and beyond in the 1960-70s, dramatically boosting yields and allowing famine-prone countries to feed their rapidly-expanding populations.

This became known as the Green Revolution and, in 1970, Borlaug received the Nobel Peace Prize in recognition of his contributions. Borlaug subsequently led CIMMYT wheat research until his retirement in 1979 and served afterwards as a special consultant to the Center.

When a new, highly virulent race of wheat stem rust, Ug99, emerged in eastern Africa in the early 2000s, Borlaug sounded the alarm and championed a global response that grew into the BGRI and associated initiatives such as DGGW.

“This is just a beginning for you, but it doesn’t end here,” said Maricelis Acevedo, a former WIT recipient who went on to become the leader of DGGW. Speaking during the training course, she observed that many WIT awardees come from settings where women often lack access to higher education or the freedom to pursue a career.

“Through WIT activities, including training courses like this and events such as Visitors’ Week and the BGRI workshop,” Acevedo added, “you’ll gain essential knowledge and skills but you’ll also learn leadership and the personal confidence to speak out, as well as the ability to interact one-on-one with leaders in your field and to ask the right questions.”

CIMMYT is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives generous support from national governments, foundations, development banks and other public and private agencies.

Funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under UK aid, the DGGW project aims to strengthen the delivery pipeline for new, disease resistant, climate-resilient wheat varieties and to increase the yields of smallholder wheat farmers.

 

Deadly strain of wheat stem rust disease surfaces in Europe

Scientists have shown that the first appearance of wheat stem rust disease in the U.K. in nearly 60 years, which occurred in 2013, was caused by the same virulent fungal strain responsible for recent wheat stem rust outbreaks in Ethiopia, Denmark, Germany, and Sweden.

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops. Photo: CIMMYT/Petr Kosina

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed
to the gods to avoid disease outbreaks on their wheat crops.
Photo: CIMMYT/Petr Kosina

As reported today in Communications Biology, an international team of researchers led by the John Innes Centre, U.K., found that 80 percent of U.K. wheat varieties are susceptible to the deadly stem rust strain. The group also confirmed for the first time in many decades that the stem rust fungus was growing on barberry bush, the pathogen’s alternate host, in the UK.

“This signals the rising threat of stem rust disease for wheat and barley production in Europe,” said Dave Hodson, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author on the study.

A scourge of wheat since biblical times, stem rust caused major losses to North American wheat crops in the early 20th century. Stem rust disease was controlled for decades through the use of resistant wheat varieties bred in the 1950s by scientist Norman Borlaug and his colleagues. Widespread adoption of those varieties sparked the Green Revolution of the 1960s and 70s.

In 1999 a new, highly-virulent strain of the stem rust fungus emerged in eastern Africa. Spores of that strain and variants have spread rapidly and are threatening or overcoming the genetic resistance of many currently sown wheat varieties. Scientists worldwide joined forces in the early 2000s to develop new, resistant varieties and to monitor and control outbreaks of stem rust and yellow rust, as part of collaborations such as the Borlaug Global Rust Initiative led by Cornell University.

Barberry is a shrub found throughout the temperate and subtropical regions. Photo: CIMMYT archives

Barberry is a shrub found throughout
the temperate and subtropical regions.
Photo: John Innes Centre

The Communications Biology study shows that 2013 U.K. stem rust strain is related to TKTTF, a fungal race first detected in Turkey that spread across the Middle East and recently into Europe. It was the dominant race in the 2013 stem rust outbreak in Germany and infected 10,000 hectares of wheat in Ethiopia’s breadbasket the same year.

Because disease organisms mutate quickly to overcome crop resistance controlled by single genes, researchers are rushing to identify new resistance genes and to incorporate multiple genes into high-yielding varieties, according to Ravi Singh, CIMMYT wheat scientist who participated in the reported study.

“The greatest hope for achieving durable resistance to rust diseases is to make wheat’s resistance genetically complex, combining several genes and resistance mechanisms,” Singh explained.

Barberry, which serves as a spawning ground for the stem rust fungus, was largely eradicated from the U.K. and U.S. last century, greatly reducing the spread and genetic diversification of rust disease races. Now barberry is being grown again in the U.K. over the last decade, according to Diane G.O. Saunders, John Innes Centre scientist and co-author of the study.

“The late Nobel laureate Norman Borlaug said that the greatest ally of the pathogen is our short memory,” Saunders stated. “We recommend continued, intensive resistance breeding. We would also welcome work with conservationists of endangered, barberry-dependent insect species to ensure that planting of common barberry occurs away from arable land, thus safeguarding European cereals from a large-scale re-emergence of wheat stem rust.”

Click here to read the John Innes Centre media release about the Communications Biology report and view the report.

Breakthrough in the battle against Ug99

Melania Figuroa and Peter Dodds
Thursday, January 25, 2018 (Posted on the Borlaug Global Rust Initiative web page)

Wheat stem rust at important flag leaf stage. Photo by Robert Park

A significant breakthrough in combatting wheat stem rust disease caused by the fungus Puccinia graminis f. sp. tritici was recently achieved through the combined work of an international collaborative team, showing the power of cooperative research approaches.

The emergence of the Ug99 race of stem rust in Africa and the Middle East together with the appearance of new strains in Europe catalyzed a major effort to identify new sources of stem rust resistance and breed these genes into wheat lines. However, the continued emergence of stem rust variants that overcome new resistance genes, now demands an increased focus on pathogen evolution and virulence mechanisms.

Numerous stem rust resistance (Sr) genes are known and in recent years several of these have been cloned and used to develop so-called ‘perfect’ markers to allow more rapid and accurate breeding. These genes typically encode immune receptors that recognize specific protein components of the fungal pathogen to trigger resistance. However, the molecules recognized by these Sr genes have been unknown until now, hampering our understanding of how new strains of P. graminis f. sp. tritici evolve to escape plant recognition.

New insight into this evolution came from the identification of the protein, AvrSr50, which is recognized by the wheat Sr50 resistance gene, by  an international collaboration led by Dr. Peter Dodds (CSIRO Food and Agriculture and University of Minnesota Adjunct Professor) and Professor Robert Park (University of Sydney and Director of theAustralian Cereal Rust Control Program) and involving teams in the UK and the US.

Click here to read the full article.

Kenya wheat breeders win the 2015 BGRI Gene Stewardship Award

By Julie Mollins/CIMMYT

NAIROBI, Kenya (October 8, 2015)- Plant pathologist Ruth Wanyera and wheat breeders Godwin Macharia and Peter Njau of the Kenya Agriculture and Livestock Research Organization (KALRO) received the 2015 Gene Stewardship Award at the Borlaug Global Rust Initiative Workshop (BGRI) in Sydney, Australia.

“The KALRO team has done an outstanding job – their work has had significant global impact by accelerating the capacity of developing countries to protect themselves against this swift-moving and devastating disease,” said Sridhar Bhavani, a wheat breeder who leads the International Maize and Wheat Improvement Center (CIMMYT) stem-rust screening nurseries in East Africa and nominated the team for the award.