Posts Tagged ‘Wheat’

Nitrogen-efficient crops on the horizon: Can we grow more with fewer emissions?

EL BATAN, Mexico (May 17, 2017) – Through a natural, affordable alternative to farmers’ heavy use of nitrogen fertilizers, science now offers an option to boost crop productivity and dramatically reduce greenhouse gas emissions, according to the authors of a report that will appear this week in the journal Plant Science.

The new study describes certain plants that possess a trait known as biological nitrification inhibition (BNI), by which they suppress the loss of nitrogen (N) from the soil and improve the efficiency of its uptake and use by themselves and other plants.

The authors, who form part of a new BNI research consortium, propose transferring the BNI trait from those plants to critical food and feed crops, such as wheat, sorghum and Brachiaria range grasses.

“Nearly a fifth of the world’s fertilizer, for example, is deployed each year to grow wheat and the crop only uses about 30 percent of the nitrogen applied,” according to Guntur Subbarao, a researcher with Japan’s International Research Center for Agricultural Sciences (JIRCAS) and lead author of the study.

New CGIAR Research Portfolio tackles growing complexity of agricultural development challenges

MONTPELLIER, France (May 15, 2017) – CGIAR has launched a new portfolio of research programs designed to reduce by 150 million the number of people who do not have enough food to eat in developing nations. By transforming agricultural and food systems, the CGIAR Portfolio 2017-2022 is the second generation of CGIAR’s Research Programs and Platforms aimed at reducing rural poverty, improving food and nutrition security and improving natural resources and ecosystem services.

Why we fly: Revolutionizing wheat phenotyping with drones

By Cally Arthur, Cornell University

CIUDAD OBREGÓN, MEXICO Ravi Singh compares plots of wheat lines growing in the fields of Obregón to determine which lines have potential as new varieties. Relying on reams of statistical breeding data and an experienced eye, the head of bread wheat improvement at the International Maize and Wheat Improvement Center (CIMMYT) evaluates plants for resistance to rusts and other diseases, height, tillering ability, grain fill or the mass and size of the spikes, and general vigor or robustness. After detailed evaluation, the fate of the plant is determined: it is selected for advancement and harvested for seed for a yield trial, or it is passed over. With his team, Singh surveys tens of thousands of small wheat plots each season.

Activating the gene power in seeds to boost wheat’s climate resilience

As part of varied approaches at the International Maize and Wheat Improvement Center (CIMMYT) to unleash the power of wheat biodiversity, researchers from India and Mexico have been mobilizing native diversity from ancestral versions of wheat and related grasses to heighten the crop’s resilience to dryness and heat—conditions that have held back wheat yields for several decades and will worsen as earth’s climate changes. Now their results are beginning to reach breeders worldwide.

Strengthening African women’s participation in wheat farming

By Dina Najjar, ICARDA

Gender inequality is a recurring feature of many agricultural production systems across the wheat-growing regions of Africa, and women farmers often lack access to credit, land, and other inputs. The result: limited adoption of new innovations, low productivity and income, and a missed opportunity to enhance household food security and prosperity.

International experts train scientists to fight deadly wheat disease in South Asia

Protective gear minimizes the chances of transferring infectious spores. Photo by Chris Knight, IP-CALS, Cornell.

By Samantha Hautea/ February 17,2017

DINAJPUR, BANGLADESH- Wheat blast, a devastating fungal disease that appeared in South Asia for the first time in 2016, was the focus of a surveillance workshop in Bangladesh where international experts trained 40 top wheat pathologists, breeders, and agronomists from Bangladesh, India and Nepal.

The two-week program, “Taking action to mitigate the threat of wheat blast in South Asia: Disease surveillance and monitoring skills training,” was held at the Bangladesh Agricultural Research Institute (BARI) Wheat Research Center (WRC) in Dinajpur, Bangladesh, February 4-16, 2017.

Wheat researchers from BARI, Cornell University, the International Maize and Wheat Improvement Center (CIMMYT), Kansas State University (KSU), and the Bangladesh Agricultural University (BAU) led the workshop, training participants to recognize, monitor, and control wheat blast.

Click here to read more.

Scientists in Afghanistan set new program to raise wheat harvests

February 17, 2017

KABUL (CIMMYT)-  Inadequate access to new disease-resistant varieties and short supplies of certified seed are holding back wheat output and contributing to rising food insecurity in Afghanistan, according to more than 50 national and international wheat experts.

Wheat scientists and policymakers discussed challenges to the country’s most-produced crop during a two-day meeting at Agricultural Research Institute of Afghanistan (ARIA) headquarters in Kabul, as part of the 5th Annual Wheat Researchers’ Workshop in November 2016. They took stock of constraints to the 2017 winter wheat crop, including dry autumn weather and rapidly-evolving strains of the deadly wheat disease known as yellow rust.

New study reveals how controlling wheat hormones can cool hot crops

By Katie Lutz/ February 2, 2017

MEXICO CITY, Mexico (CIMMYT) — Reductions of spike-ethylene, a plant-aging hormone, could increase wheat yields by 10 to 15 percent in warm locations, according to a recent study published in New Phytologist journal.

Ethylene is usually produced by plants at different developmental stages and can cause a wide range of negative effects on plant growth and development.

When hot weather hits a wheat field an increase in ethylene levels can lessen the amount of grains produced on ears or spikes by limiting the export of carbohydrates to pollen development.

Crop sensors sharpen nitrogen management for wheat in Pakistan

By Abdul Hamid, Ansaar Ahmed and Imtiaz Hussain/ February 1, 2017

ISLAMABAD (CIMMYT) – Pakistani and the International Maize and Wheat Improvement Center (CIMMYT) scientists are working with wheat farmers to test and promote precision agriculture technology that allows the farmers to save money, maintain high yields and reduce the environmentally harmful overuse of nitrogen fertilizer.

Wheat is planted on more than 9 million hectares in Pakistan each year. Of this, 85 percent is grown under irrigation in farming systems that include several crops.

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

EL BATAN, Mexico (CIMMYT)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.