Researchers in Zambia confirm: Wheat blast has made the intercontinental jump to Africa

Wheat blast in experimental plots (Photo: Batiseba Tembo, ZARI)

Wheat blast, a fast-acting and devastating fungal disease, has been reported for the first time on the African continent, according to a new article published by scientists from the Zambian Agricultural Research Institute (ZARI), the International Maize and Wheat Improvement Center (CIMMYT) and the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS) in the scientific journal PLoS One.

Symptoms of wheat blast first appeared in Zambia during the 2018 rainy season in experimental plots and small-scale farms in the Mpika district, Muchinga province.

Wheat blast poses a serious threat to rain-fed wheat production in Zambia and raises the alarm for surrounding regions and countries on the African continent with similar environmental conditions. Worldwide, 2.5 billion consumers depend on wheat as a staple food, and in recent years, several African countries have been actively working towards reducing dependence on wheat imports.

“This presents yet another challenging biotic constraint to rain-fed wheat production in Zambia,” said Batiseba Tembo, wheat breeder at ZARI and lead scientist on the study.

A difficult diagnosis

“The first occurrence of the disease was very distressing. This happened at the spike stage, and caused significant losses,” said Tembo. “Nothing of this nature has happened before in Zambia.”

Researchers were initially confused when symptoms of the disease in the Mpika fields were first reported. Zambia has unique agro-climatic conditions, particularly in the rainfed wheat production system, and diseases such as spot blotch and Fusarium head blight are common.

“The crop had silvery white spikes and a green canopy, resulting in shriveled grains or no grains at all…Within the span of 7 days, a whole field can be attacked,” said Tembo. Samples were collected and analyzed in the ZARI laboratory, and suspicions grew among researchers that this may be a new disease entirely.

Wheat blast in a farmer’s field in Mpika district, 2020 (Photo: Batiseba Tembo, ZARI)

A history of devastation

Wheat blast, caused by Magnaporthe oryzae pathotype Triticum (MoT), was initially discovered in Brazil in 1985, and within decades had affected around 3 million hectares of wheat in South America alone. The disease made its first intercontinental jump to Asia in 2016, causing a severe outbreak in Bangladesh, reducing yield on average by as much as 51% in the affected fields.

The disease has now become endemic to Bangladesh, and has potential to expand to similar warm, humid and wet environments in nearby India and Pakistan, as well as other regions of favorable disease conditions.

Wheat blast spreads through infected seeds and crop residues as well as by spores that can travel long distances in the air. The spread of blast within Zambia is indicated by both mechanisms of expansion.

Developing expert opinions

Tembo participated in the Basic Wheat Improvement Course at CIMMYT in Mexico, where she discussed the new disease with Pawan Singh, head of Wheat Pathology at CIMMYT.  Singh worked with Tembo to provide guidance and the molecular markers needed for the sample analysis in Zambia, and coordinated the analysis of the wheat disease samples at the USDA-ARS facility in Fort Detrick, Maryland.

All experiments confirmed the presence of Magnaporthe oryzae pathotype Triticum (MoT).

“This is a disaster which needs immediate attention,” said Tembo. “Otherwise, wheat blast has the potential to marginalize the growth of rain-fed wheat production in Zambia and may threaten wheat production in neighboring countries as well.”

Wheat blast observed in Mpika, Zambia  (Photo: Batiseba Tembo, ZARI)

A cause for innovation and collaboration

CIMMYT and the CGIAR Research Program on Wheat (WHEAT) are taking action on several fronts to combat wheat blast. Trainings, such as an international course led by the Bangladesh Wheat and Maize Research Institute (BWMRI) in collaboration with CIMMYT, WHEAT and others, invite international participants to gain new technical skills in blast diagnostics and treatment and understand different strategies being developed to mitigate the wheat blast threat. WHEAT scientists and partners are also working quickly to study genetic factors that increase resistance to the disease and develop early warning systems, among other research interventions. 

“A set of research outcomes, including the development of resistant varieties, identification of effective fungicides, agronomic measures, and new findings in the epidemiology of disease development will be helpful in mitigating wheat blast in Zambia,” said Singh.

Tembo concluded, “It is imperative that the regional and global scientific community join hands to determine effective measures to halt further spread of this worrisome disease in Zambia and beyond.”


Read the study:

Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia

Interview opportunities:

Pawan Kumar Singh, Senior Scientist and Head of Wheat Pathology (CIMMYT)

Batiseba Tembo, Wheat Breeder, Zambian Agricultural Research Institute (ZARI) batemfe@yahoo.com

For more information, or to arrange interviews, contact the media team:

Rodrigo Ordóñez, Communications Manager (CIMMYT) r.ordonez@cgiar.org


Acknowledgements

Financial support for this research was provided by the Zambia Agriculture Research Institute (ZARI), the CGIAR Research Program on Wheat (WHEAT), the Australian Centre for International Agricultural Research (ACIAR), and the US Department of Agriculture’s Agricultural Research Service (USDA-ARS). 

The Basic Wheat Training Program and Wheat Blast Training is made possible by support from investors including ACIAR, WHEAT, the Indian Council of Agricultural Research (ICAR), Krishi Gobeshona Foundation (KGF), the Swedish Research Council (SRC) and the United States Agency for International Development (USAID).

About CIMMYT

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit www.cimmyt.org.

https://flic.kr/p/2j2kd48

A “track record of delivering local solutions with a global perspective:” Review confirms impact and importance of WHEAT research

https://flic.kr/p/2j2kd48
Wheat trainees and CIMMYT staff examine wheat plants in the field at the experimental station in Toluca, Mexico. Credit: CIMMYT / Alfonso Cortés

The CGIAR Research Program on Wheat (WHEAT) has “a track record of delivering local solutions with a global perspective — and is well positioned to continue this trajectory in the next decade.”

This was a key finding of a recent review of the program aimed to assess WHEAT’s 2017-2019 delivery of quality science and effectiveness, as well as to provide insights and lessons to inform the program’s future.

“Wheat as a crop is bound to be central to global food security in the foreseeable future,” the reviewers stated.

The crop currently contributes 20% of the world population’s calories and protein—and global demand is estimated to increase by 44% between 2005-07 and 2050.

WHEAT — led by the International Maize and Wheat Improvement Center (CIMMYT) with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a key research partner —has two pillars that are essential to meeting this demand: raising potential yield through breeding and closing the yield gap through sustainable intensification at field, farm and landscape scales.

Key recommendations included supporting strategic investment in research partner network development and maintenance, and continuing WHEAT’s trajectory towards modernizing breeding processes and integrating sustainable intensification approaches, including mechanization.

The reviewers warned of challenges for the way ahead, pointing out that partnerships — and WHEAT’s reputation as a reliable partner — are vulnerable to funding volatility. The review also raised concerns about the potential fragmentation of the global breeding program, restrictions to the international exchange of germplasm and ideas, “misguided” emphasis on minor crops, and CGIAR’s “focus on process at the expense of results.”

“This review cuts to the core of what’s so critical—and at risk – not only with our program but wheat research in general,” said Hans Braun, director of the CIMMYT Global Wheat Program and the CGIAR Research Program on Wheat. “Global collaboration and the exchange of improved seeds, data, and especially information.”

“The reviewers rightly point out that limited resources will lead to competition and dampen this collaboration—even between scientists in the same program. We must address this potential risk to improve integration and continue our life saving work.” 

“In most of the developing world, the alliance of public sector and CGIAR wheat breeding programs, as well as some national public breeding programs on their own, will remain dominant providers of wheat varieties, until either functioning seed royalty collection systems are established and/or hybrid wheat becomes a reality,” he added.

WHEAT’s strength is its robust global network of research for development partners and scientists linked to global breeding in a ‘wide adaptation’ approach,” said Victor Kommerell, program manager for the CGIAR Research Programs on Wheat and Maize.

“This review underscores that breaking up the breeding program could cause lasting damage to this network.”

More key findings include:

  • WHEAT is effective and well-managed: In 2017- 2019, WHEAT mainly achieved its planned outputs and outcomes, and in addition achieved unplanned outcomes. For the three years reviewed, WHEAT did not drop any research line.
  • WHEAT’s strength is its partnerships: WHEAT has catalyzed a global network of research and development (R&D) that has delivered and continues to deliver a disproportionate wealth of outputs in relation to investment.
  • WHEAT creates, and thrives on, collaboration: The predominantly public nature of wheat R&D (In the period 1994–2014, the public sector accounted for 63% of global wheat varietal releases and more than 95% of releases in developing countries) favors collaboration, compared with other industries.
  • WHEAT facilitates shared success: The long history of collaboration between CIMMYT, ICARDA and national partners has fostered a sense of belonging to the International Wheat Improvement Network that permits free exchange of information and germplasm, allowing the best varieties to be released, irrespective of origin. International nursery testing delivers elite lines for national program use; data shared by national programs informs WHEAT’s next crossing cycle.

Read more in a 2-page brief summarizing key findings, conclusions and recommendations or on the CGIAR Advisory Services page.

Massive-scale genomic study reveals wheat diversity for crop improvement

A team of scientists has found desirable traits in wheat’s extensive and unexplored diversity.

This press release was originally posted on the website of the International Maize and Wheat Improvement Center (CIMMYT).

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)

Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study published today in Nature Communications are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally — bread and pasta wheat — and of 27 known wild species.

Wheat is the most widely grown crop globally, with an annual production exceeding 600 million tons. Approximately 95% of the grain produced corresponds to bread wheat and the remaining 5% to durum or pasta wheat.

The main objective of the study was to characterize the genetic diversity of CIMMYT and ICARDA’s internationally available collections, which are considered the largest in the world. The researchers aimed to understand this diversity by mapping genetic variants to identify useful genes for wheat breeding.

From germplasm bank to breadbasket

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.

“The analysis of the bread wheat accessions reveals that relatively little of the diversity available in the landraces has been used in modern breeding, and this offers an opportunity to find untapped valuable variation for the development of new varieties from these landraces”, said Carolina Sansaloni, high-throughput genotyping and sequencing specialist at CIMMYT, who led the research team.

The study also found that the genetic diversity of pasta wheat is better represented in the modern varieties, with the exception of a subgroup of samples from Ethiopia.

The researchers mapped the genomic data obtained from the genotyping of the wheat samples to pinpoint the physical and genetic positions of molecular markers associated with characteristics that are present in both types of wheat and in the crop’s wild relatives.

According to Sansaloni, on average, 72% of the markers obtained are uniquely placed on three molecular reference maps and around half of these are in interesting regions with genes that control specific characteristics of value to breeders, farmers and consumers, such as heat and drought tolerance, yield potential and protein content.

Open access

The data, analysis and visualization tools of the study are freely available to the scientific community for advancing wheat research and breeding worldwide.

“These resources should be useful in gene discovery, cloning, marker development, genomic prediction or selection, marker-assisted selection, genome wide association studies and other applications,” Sansaloni said.


Read the study:

Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints.

Interview opportunities:

Carolina Sansaloni, High-throughput genotyping and sequencing specialist, CIMMYT.

Kevin Pixley, Genetic Resources Program Director, CIMMYT.

For more information, or to arrange interviews, contact the media team:

Ricardo Curiel, Communications Officer, CIMMYT. r.curiel@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

The study was part of the SeeD and MasAgro projects and the CGIAR Research Program on Wheat (WHEAT), with the support of Mexico’s Secretariat of Agriculture and Rural Development (SADER), the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors. Research and analysis was conducted in collaboration with the National Institute of Agricultural Botany (NIAB) and the James Hutton Institute (JHI).

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit www.cimmyt.org.

WHEAT Launches 2019 Annual Report

The CGIAR Research Program on Wheat (WHEAT) is proud to release our 2019 Annual Report, celebrating shared achievements through partnerships around the world for the 7th year of the program.

In this year’s report, we highlight cutting edge work by researchers and partners — particularly our primary research partner, the International Center for Agricultural Research in the Dry Areas (ICARDA) — to help farmers grow wheat that is nutritious, resilient, and high-yielding—while decreasing environmental impact.

DNA fingerprinting, a smartphone-powered warning system, no-till innovations and the joint release of 50 new CGIAR-derived wheat varieties are just a few markers of success in a busy, challenging, and exciting year.

The threat of the current global pandemic highlights the crucial role wheat plays in the health and livelihoods of millions. We look forward to continued productive collaborations as we transition with our partners into an integrated, inclusive “One CGIAR” designed to meet the UN Sustainable Development Goals.

Read more in the full SPARK, web-based annual report here.

New genetic analysis advances the global quest for yellow rust resistant wheat

A wheat leaf infected with yellow rust, also known as stripe rust. Photo: Thomas Lumpkin/CIMMYT

Yellow rust, also known as stripe rust, is a tenacious and widespread fungal disease that threatens wheat all over the world. The fungal pathogen that causes the rust — Puccinia striiformis — is prevalent in more than 60 countries, and an estimated 88% of the world’s wheat production is considered vulnerable, with up to 100% losses. 

A number of factors – including favorable weather conditions, the adaptation of existing races and emergence of new ones, and a changing climate – have caused a recent uptick in severe outbreaks. Farmers can use fungicides and farming management practices to battle the fungus, but sowing resistant seeds is widely considered as the most cost-effective, environmentally-safe and sustainable way to beat it.

A new analysis by wheat scientists at the International Maize and Wheat Improvement Center (CIMMYT) published in Scientific Reports provides valuable insights and a deep resource of genetic information to increase the speed and accuracy of efforts to breed yellow rust resistant wheat.

To understand the shared genetic basis of yellow rust resistance over time and in three geographic regions, CIMMYT scientists performed a large genome-wide association study leveraging a dataset of 43,706 observations on 23,346 wheat lines evaluated between 2013 and 2019 at sites in India, Kenya and Mexico.

Photo: Flickr/ Wheat Genetics Lab

They found more than 100 repeatable –that is, statistically significant in multiple datasets — genome-wide markers associated with yellow rust that aligned to the reference genome of wheat.

 “These findings represent a significant advancement in our knowledge about the genetics of yellow rust resistance in bread wheat and provide exciting opportunities for designing future genomics-based breeding strategies for tackling yellow rust,” said CIMMYT wheat scientist Philomin Juliana, the lead author of the paper.

CIMMYT wheat scientists have been breeding for yellow rust resistance since the early 1970s. Breeding for resistance is a painstaking process involving crossing parents with slow rusting genes, selecting early-generation plants which exhibit resistance in Toluca, Mexico, and then subjecting the advanced generations to intense screening in sites like Karnal (in collaboration with the Indian Institute of Wheat and Barley Research) and Ludhiana (in collaboration with the Borlaug Institute for South Asia) in India; Njoro in Kenya; and Celaya (in collaboration with the Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias), El Batan and Toluca in Mexico. Identifying genes related to resistance can increase the efficiency of this selection process, giving breeders a head start by allowing them to begin the crossing process with varieties that are more likely to have resistance genes.

In the study, the wheat scientists also conducted “allelic fingerprinting” on the largest panel of wheat breeding lines to date — 52,067 lines, genomically characterizing them for yellow rust resistance.  The resulting data creates opportunities using molecular markers to identify varieties with desired combinations of resistance genes.

“This information advances our knowledge on the genetics of yellow rust resistance in thousands of wheat lines, and has important implications for the future design of resistant crosses and varieties,” Juliana said.

Overall, the markers and fingerprints identified in this study are a valuable resource not only for CIMMYT breeders but also for the global wheat breeding community in its efforts to accelerate yellow rust resistance breeding.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK  Department for International Development (DFID) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future Initiative; and the genotyping support of Dr. Jesse Poland from the innovation lab at Kansas State University.

Read the full article here:
https://doi.org/10.1038/s41598-020-67874-x

Juliana, P., Singh, R.P., Huerta-Espino, J. et al. 2020. “Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico.” Nature Scientific Reports.

MARPLE: the real-time cereal killer detective

Photo: Matt Heaton/JIC

A new case study by the Biotechnology and Biological Sciences Research Council shines a spotlight on the MARPLE (Mobile and Real-time PLant disEase) Diagnostics kit, a revolutionary technology that can identify fungus strains in just two days.

MARPLE, which was developed by the John Innes Centre in collaboration with the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR), is currently being rolled out across five major research hubs in Ethiopia. As sub-Saharan Africa’s largest wheat producer, Ethiopia is considered “a gateway for new rust pathogen strains entering from Asia”.

Read the case study:

MARPLE: the real-time cereal killer detective

Preserving the legacy of biodiversity

This story by Alfonso CortésRodrigo Ordóñez and Silvia Rico was originally published on the CIMMYT website.

A NordGen staff member brings a box of seed into the Global Seed Vault in Svalbard, Norway. (Photo: Thomas Sonne/Common Ground Media for NordGen)

Seed security is the first step towards food security. The International Maize and Wheat Improvement Center (CIMMYT) preserves 28,000 unique seed samples of maize and 150,000 of wheat at its genebank in Mexico.

The Global Seed Vault in Svalbard opened in 2008. Since then, CIMMYT has duplicated and deposited 50 million seeds — 170,000 samples of maize and wheat — at Svalbard.

This year, CIMMYT sent 24 boxes of seed, with 332 samples of maize and 15,231 samples of wheat.

Join these seeds on a journey, as they travel more than 8,000 km from CIMMYT’s genebank in Mexico to the Global Seed Vault in the Arctic.

A supermarket, rather than a museum

This treasure, kept in the global network of genebanks, is key to ensuring sustainable, nutritious agricultural systems for future generations.

The purpose of genebanks is not just to preserve seed, but to use its biodiversity to address the needs of the future — and the needs of today.

Climate change is already impacting resource-poor farmers and consumers in low- and middle-income countries. Researchers and breeders at CIMMYT are rolling out solutions to these challenges, based on the diverse genetic resources kept in the genebank. As a result, farmers can use new varieties that yield more, need less inputs, and are more tolerant to drought or heat.

Our internal estimates show that about 30% of maize and more than 50% of wheat grown worldwide can be traced to CIMMYT germplasm.

Humanity’s legacy

Maize and wheat originated about 10,000 years ago. Since then, it’s survived war, drought, diseases, migration, birds, low yields — and the hard choice between feeding children or planting again.

Keepers of genebanks around the world are only the depositors of this legacy, which belongs to all humanity. CIMMYT will continue to preserve these seeds and to make their biodiversity available to researchers and famers, to solve today’s and tomorrow’s most pressing issues.

An environmental look at WHEAT research

As we recognize the 50th year of Earth Day, the CGIAR Research Program on Wheat (WHEAT) looks back on recent impactful research to increase crop productivity while conserving natural resources.

WHEAT and its lead research partner, the International Maize and Wheat Improvement Center (CIMMYT), are proud of our research to move the needle on improving the environmental sustainability of farming and food production.

Plant resistance to insects

The 24th biannual session of the International Plant Resistance to Insects (IPRI) workshop, held at CIMMYT headquarters this year, featured innovative insect resistance solutions to the global threat of crop pests. Their goal: to reduce the use of pesticides.

Conservation agriculture

WHEAT and CIMMYT research has consistently shown the wide-ranging benefits of conservation agriculture practices such as zero tillage, crop rotation and soil cover – for crop performance, water use efficiency, farmer incomes and climate action. This research helps governments in South Asia — a global “hotspot” for climate vulnerability – develop policies to prioritize and encourage these techniques.

Appropriate fertilizer use

Research by WHEAT scientist Tek Sapkota has identified the optimum rates of nitrogen fertilizer application for rice and wheat in the Indo-Gangetic Plains of India — minimizing dangerous greenhouse gas emissions while maintaining crop productivity.

Reducing residue burning

A  study  by a global team including WHEAT scientist ML Jat shows that replacing rice residue burning with no-till farming practices raises farmers’ profits, cuts farm-related greenhouse gas emissions by as much as 78%, and lowers the choking air pollution that plagues the region each winter. These findings support Indian government policies including a US$166 million subsidy to promote mechanization such as the Happy Seeder.

Earth Day 1970 gave a voice to an emerging public consciousness about the state of our planet. With the same consciousness, we at WHEAT continue to work on research solutions to sustainably increase the production of nutritious wheat for improved livelihoods throughout the world.

Blast and rust forecast

This story by Matthew O’ Leary was originally published on the CIMMYT website.

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Concerned experts ask world leaders to head off a global food security crisis from COVID-19

This story by Mike Listman was originally posted on the CIMMYT website.

Alarmed by the risk of global and regional food shortages triggered by the COVID-19 pandemic, a coalition of businesses, farmers’ groups, industry, non-governmental organizations, and academia has called on world leaders urgently to maintain open trade of their surplus food products.

Published by the Food and Land Use Coalition (FOLU) on April 9, 2020, and signed by 60 experts, the call to action urges world leaders to keep food supplies flowing, specially support vulnerable people, and finance sustainable, resilient food systems.

Covered by major world media, the declaration encourages governments to treat food production, processing, and distribution as an essential sector — similar to public health care — and thus to support continued, safe, and healthy activities by farmers and others who contribute to the sector, according to Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT) and a signatory of the call to action.

“Consumers in low-income countries face the greatest threat of food insecurity,” said Kropff. “Their tenuous access to nutritious food is jeopardized when surplus food-producing nations choose to close trade as a defensive measure.”

Kropff added that many households in low-income countries depend on agriculture or related activities for their food and livelihoods. Their productivity and food security are compromised by illness or restrictions on movement or working.

“The call to action resonates with the findings of a landmark 2015 study by Lloyd’s of London,” he explained. “That work highlighted the fragility of global food systems in the event of coinciding shocks, an outcome that seems entirely possible now, given the health, cultural, and economic impacts of the COVID-19 pandemic.”

At the same time, the work of CIMMYT, other CGIAR centers, and their partners worldwide helps to stabilize food systems, according to Kropff.

“Our research outputs include high-yielding, climate-resilient crop varieties and more productive, profitable and sustainable farming methods,” he said. “These give farmers — and especially smallholders — the ingredients for more efficient and effective farming. They are grounded in reality through feedback from farmers and local partners, as well as socioeconomic studies on markets and value chains for food production, processing, and distribution.”