New index gauges seed companies’ progress reaching smallholders in Asia

Sowing rice seed in Nepal. (Photo: CIMMYT/P. Lowe)

The Access to Seeds Index, an initiative to measure and compare the efforts of global seed companies to enhance the productivity of smallholder farmers, recently released the Access to Seeds Index 2019 for South and Southeast Asia. The Index details what 24 of the leading seed companies are doing—and what they are failing to do—to provide quality seed to smallholder farmers in the region. It is the first time a tool has shed light on how companies are reaching smallholder farmers in the region.

Crucial partners for achieving food and nutritional security, seed companies can directly help boost smallholder farmer productivity through the distribution of improved seed. To date, however, they only reach 20 percent of the smallholder farmers in the region.

To evaluate the 24 seed companies, the Index uses scorecards to outline the portfolio and strengths of each company. The Index also assesses company performance based on 59 indicators across four categories: commitment, performance, transparency and leadership. The companies who scored highly on the Index are characterized by having sustainable strategies aimed at improving access to seeds for smallholder farmers in the region.

In South and Southeast Asia, small-scale farming is the predominate form of agricultural activity. To raise agricultural productivity while simultaneously confronting climate change, seed companies and their shared successes in plant breeding are beneficial, but only when they reach smallholder farmers. The Index provides a resource to help close that gap.

In the months to come, the Access to Seeds Index will also publish indexes covering global seed industry benchmarks.

Read the full Access to Seeds Index 2019 for South and Southeast Asia here.

A wheat self-sufficiency roadmap for Ethiopia’s future

Mechanization could boost Ethiopian wheat production and provide youth with new job opportunities. (Photo: Gerardo Mejía/CIMMYT)

This blog by Jérôme Bousset was originally posted on CIMMYT.org.

The Ethiopian government announced recently that the country should become wheat self-sufficient over the next four years. Why is boosting domestic wheat production important for this country in the Horn of Africa, and could wheat self-sufficiency be attained in the next four years? The Ethiopian Institute for Agricultural Research (EIAR), with the support of International Maize and Wheat Improvement Center (CIMMYT), gathered agriculture and food experts from the government, research and private sectors on November 23, 2018, to draw the first outlines of this new Ethiopian wheat initiative.

The low-tech domestic wheat farming and price support issue

Despite a record harvest of 4.6 million metric tons in 2017, Ethiopia imported 1.5 million tons of wheat the same year, costing US$600 million. Population growth, continuous economic growth and urbanization over the last decade has led to a rapid change in Ethiopian diets, and the wheat sector cannot keep up with the growing demand for pasta, dabo, ambasha and other Ethiopian breads.

The majority of Ethiopia’s 4.2 million wheat farmers cultivate this cereal on an average of 1.2-hectare holdings, with three quarters produced in Arsi, Bale and Shewa regions. Most prepare the land and sow with draft animal power equipment and few inputs, dependent on erratic rainfall without complementary irrigation. Yields have doubled over the last 15 years and reached 2.7 tons per hectare according to the latest agricultural statistics, but are still far from the yield potential.

According to data from the International Food Policy Research Institute (IFPRI), wheat is preferred by wealthier, urban families, who consume 33 percent more wheat than rural households. Ethiopia needs to rethink its wheat price support system, which does not incentivize farmers and benefits mostly the wealthier, urban consumers. Wheat price support subsidies could, for instance, target bakeries located in poor neighborhoods.

 

Ethiopia’s Minister of Agriculture and Natural Resources, Eyasu Abraha, welcomes conference participants. (Photo: Jérôme Bossuet/CIMMYT)

Where to start to boost wheat productivity?

Ethiopia, especially in the highlands, has an optimum environment to grow wheat. But to make significant gains, the wheat sector needs to identify what limiting factors to address first. The Wheat initiative, led by Ethiopia’s Agricultural Transformation Agency (ATA), has targeted 2,000 progressive farmers across 41 woredas (districts) between 2013 and 2018, to promote the use of improved and recommended inputs and better cropping techniques within their communities. A recent IFPRI impact study showed a 14 percent yield increase, almost enough to substitute wheat imports if scaled up across the country. It is, however, far from the doubling of yields expected initially. The study shows that innovations like row planting were not widely adopted because of the additional labor required.

Hans Braun, WHEAT CGIAR research program and CIMMYT’s Global Wheat Program director, believes Ethiopian farmers can achieve self-sufficiency if they have the right seeds, the right agronomy and the right policy support.

One priority is to increase support for wheat improvement research to make wheat farmers more resilient to new diseases and climate shocks. Drought and heat tolerance, rust resistance and high yields even in low-fertility soils are some of the factors sought by wheat farmers.

International collaboration in durum wheat breeding is urgently needed as the area under durum wheat is declining in Ethiopia due to climate change, diseases and farmers switching to more productive and resilient bread wheat varieties. Braun advises that Ethiopia set up a shuttle breeding program with CIMMYT in Mexico, as Kenya did for bread wheat, to develop high-yielding and stress-resistant varieties. Such a shuttle breeding program between Ethiopia and Mexico would quickly benefit Ethiopian durum wheat farmers, aiming at raising their yields similar to those of Mexican farmers in the state of Sonora, who harvest more than 7 tons per hectare under irrigation. This would require a policy reform to facilitate the exchange of durum germplasm between Ethiopia and Mexico, as it is not possible at the moment.

Ethiopia also needs to be equipped to respond quickly to emerging pests and diseases. Five years ago, a new stem rust (TKTTF, also called Digalu race) damaged more than 20,000 hectares of wheat in Arsi and Bale, as Digalu — the popular variety used by local farmers — was sensitive to this new strain. The MARPLE portable rust testing lab, a fast and cost-effective rust surveillance system, is now helping Ethiopian plant health authorities quickly identify new rust strains and take preventive actions to stop new outbreaks.

CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media during the conference. (Photo: Jérôme Bossuet/CIMMYT)

Invest in soil health, mechanization and gender

In addition to better access to improved seeds and recommended inputs, better agronomic practices are needed. Scaling the use of irrigation would certainly increase wheat yields, but experts warn not to dismiss adequate agronomic research — knowing the optimal water needs of the crop for each agroecological zone — and the underlying drainage system. Otherwise, farmers are at risk of losing their soils forever due to an accumulation of salt.

‘’2.5 billion tons of topsoil are lost forever every year due to erosion. A long-term plan to address soil erosion and low soil fertility should be a priority,” highlights Marco Quinones, adviser at ATA. For instance, large-scale lime application can solve the important issue of acid soils, where wheat does not perform well. But it requires several years before the soil can be reclaimed and visible yield effects can be seen.

Mechanization could also boost Ethiopian wheat production and provide youth with new job opportunities. Recent research showed smallholder farmers can benefit from six promising two-wheel tractor (2WT) technologies. Identifying the right business models and setting up adapted training programs and financial support will help the establishment of viable machinery service providers across the country.

Better gender equity will also contribute significantly to Ethiopia becoming self-sufficient in wheat production. Women farmers, especially female-headed households, do not have the same access to trainings, credit, inputs or opportunities to experiment with new techniques or seed varieties because of gender norms. Gender transformative methodologies, like community conversations, can help identify collective ways to address such inequalities, which cost over one percent of GDP every year.

‘’With one third better seeds, one third good agronomy and one third good policies, Ethiopia will be able to be wheat self-sufficient,” concluded Braun. A National Wheat Taskforce led by EIAR will start implementing a roadmap in the coming days, with the first effects expected for the next planting season in early 2019.

The consultative workshop “Wheat Self-Sufficiency in Ethiopia: Challenges and Opportunities” took place in Addis Ababa, Ethiopia, on November 23, 2018.

Global study paves the way for developing gender-transformative interventions

By Dina Najjar

Gender norms – a set of cultural or societal rules or ideas on how each gender should behave – matters deeply on whether people adopt and benefit from innovations. Gender norms are also fluid, as they respond to changes in society, yet many of us fail to catch up with the changing norms.

Example: As farming becomes less and less profitable, men leave rural areas for cities in search of jobs. This leaves women in charge of farms, especially in subsistence farming, but many policymakers mistakenly believe that women’s roles are still confined to the house. This then becomes a barrier for women to benefit equally from agricultural innovations as men do, which negatively affects agricultural production in the household and community, more broadly.

A breakthrough CGIAR global comparative research initiative “GENNOVATE” has paved the way for developing gender-transformative interventions.

Among many resources it offers is a unique, in-depth gender knowledge base, established following five years of painstaking research – undertaken by 11 CGIAR centers, including ICARDA, and gender specialists across the globe. The study’s vast data and analyses have enabled researchers to move beyond smaller, unconnected studies that have largely defined gender research.

In order to address the question of how gender norms influence men, women, and youth to adopt innovation in agriculture and natural resource management, GENNOVATE has engaged 7,500 participants from 137 rural communities in 26 countries in Africa, Asia, and Latin America. The qualitative comparative study employs a framework based on the understanding that for innovation to be effective, women and men on the ground must exercise “agency” and be active participants in adopting new technology or practice.

The findings cast light on hidden norms within rural farming societies, as well as biases that influence decision making, technology access, and adoption within these societies and in rural development programming.

GENNOVATE also provides tools and resources to help the integration of gender sensitivities into agricultural research for development projects. These evidence-based inputs and recommendations can facilitate the development of less-biased, customized interventions that meets the specific needs of target populations. They can also ensure that this is done in an inclusive, responsible manner in tune with local norms.

This means scientists, practitioners, and policymakers can more easily incorporate gender into their work on climate-smart agriculture, conservation agriculture, mechanization, and farmer-training events, just to name a few. In short, it optimizes the chances of adoption of agricultural and environmental innovation.

ICARDA and GENNOVATE

ICARDA has contributed 10 case studies to GENNOVATE. Three case studies from Morocco focused on linking gender norms and agency with innovations in agriculture, such as drip irrigation, and improved wheat and chickpeas varieties. Uzbekistan’s four case studies linked gender norms and agency with improved wheat varieties. Three cases in India’s Rajasthan studied the link of gender norms and agency with improved barley varieties, contract barley farming, and improved goat breeds.

ICARDA also contributed to three of the six studies featured in The Journal of Gender, Agriculture, and Food Security’s special issue dedicated to GENNOVATE.

The paper “What drives capacity to innovate? Insights from women and men small-scale farmers in Africa, Asia, and Latin America” demonstrated that gender norms and personality attributes influence men’s and women’s ability to try out, adopt, and benefit from agricultural innovations, as well as their ability to make decisions around them – this is an area that has been largely underreported in the innovation literature.

“Gendered aspiration and occupations among rural youth in agriculture and beyond” shows that youth and gender issues are inextricably intertwined, and as a result, they cannot be understood in isolation from each other. The study also shows that deeply-ingrained gender norms often dissuade young women from pursuing agriculture-related occupation.

“Community typology framed by normative climate for agricultural innovation, empowerment, and poverty reduction” made a case that inclusive norms can lead to gender equality and agricultural innovation, deepening the capacity to make decisions that can lead to escape from poverty.

ICARDA’s contribution to GENNOVATE has been made possible with support from CGIAR Research Program on Wheat and CGIAR Research Program on Grain Legumes and Dryland Cereals.

Dina Najjar is a gender specialist at ICARDA.

IWYP annual report highlights new wheat lines, product development

The International Wheat Yield Partnership (IWYP), a partnership of public sector agencies and private industry focusing on innovations in wheat breeding for significant yield increases, recently released its 2017-2018 Annual Report.  Many new research discoveries have been recorded over the last year, from germplasm with traits to improve genetic yield potential to molecular genetic markers associated with a target trait and new methods and technology to improve screening of individual wheat lines.

Accomplishments include making wheat lines with higher biomass and grain yields available for release in national programs, validating the hypothesis that combining parents with high biomass and good harvest index can boost genetic gains.  IWYP researchers have also made publicly available new wheat lines with increased grain size and spike morphology, which several breeding companies in the UK, Europe and Brazil have requested. Yield trials have also led to the discovery of several physiological trait lines that outperform the best local and International Maize and Wheat Improvement Center (CIMMYT) check varieties in over 27 environments.

The Partnership, which includes 30 projects in more than 50 laboratories in 12 countries, is now in its third year. Outputs from its earliest projects are currently being validated and integrated in a prebreeding pipeline at the IWYP Hub at CIMMYT for development into pre-products. This ensures the best “toolbox” of new traits, genetics, and technology to reach its critical challenge of raising genetic wheat yield potential 50 percent by 2035.

Read the full report here.

Inspiring millennials to focus on food security: The power of mentorship

by Mike Listman, November 13, 2018

As part of their education, students worldwide learn about the formidable challenges their generation faces, including food shortages, climate change, and degrading soil health. Mentors and educators can either overwhelm them with reality or motivate them by real stories and showing them that they have a role to play. Every year the World Food Prize lives out the latter by introducing high school students to global food issues at the annual Borlaug Dialogue, giving them an opportunity to interact with “change agents” who address food security issues. The World Food Prize offers some students an opportunity to intern at an international research center through the Borlaug-Ruan International Internship program.
Tessa Mahmoudi

Tessa Mahmoudi, plant microbiologist and 2012 World Food Prize Borlaug-Ruan summer intern, credits the mentorship of CIMMYT researchers in Turkey with changing her outlook on the potential of science to improve food security and health. (Photo: University of Minnesota).

Plant Microbiologist Tessa Mahmoudi, a 2012 World Food Prize’s Borlaug-Ruan summer intern, says her experience working with CIMMYT researchers in Turkey when she was 16 years old profoundly changed her career and her life.

“For a summer I was welcomed to Turkey not as a child, but as a scientist,” says Mahmoudi, who grew up on a farm in southeast Minnesota, USA. “My hosts, Dr. Abdelfattah A. Dababat and Dr. Gül Erginbas-Orakci, who study soil-borne pathogens and the impact those organisms have on food supplies, showed me their challenges and, most importantly, their dedication.”

Mahmoudi explains she still finds the statistics regarding the global food insecurity to be daunting but saw CIMMYT researchers making real progress. “This helped me realize that I had a role to play and an opportunity to make positive impact.”

Among other things, Mahmoudi learned what it meant to be a plant pathologist and the value of that work. “I began to ask scientific questions that mattered,” she says. “And I went back home motivated to study — not just to get good grades, but to solve real problems.”

She says her outlook on the world dramatically broadened. “I realized we all live in unique realities, sheltered by climatic conditions that strongly influence our world views.”

According to Mahmoudi, her internship at CIMMYT empowered her to get out of her comfort zone and get involved in food security issues. She joined the “hunger fighters” at the University of Minnesota while pursuing a bachelor’s in Plant Science. “I was the president of the Project Food Security Club which focuses on bring awareness of global hunger issues and encouraging involvement in solutions.” She also did research on stem rust under Matthew Rouse, winner of the World Food Prize 2018  Norman Borlaug Award for Field Research and Application.

Pursuing a master’s in plant pathology at Texas A&M University under the supervision of Betsy Pierson, she studied the effects of plant-microbe interactions on drought tolerance and, specifically, how plant-microbe symbiosis influences root architecture and wheat’s ability to recover after suffering water stress.

Mahmoudi incorporates interactive learning activities in her class (see her website, https://reachingroots.org/). Her vision is to increase access to plant science education and encourage innovation in agriculture.Currently, Mahmoudi is involved in international development and teaching. As a horticulture lecturer at Blinn College in Texas, she engages students in the innovative use of plants to improve food security and global health.

“As a teacher and mentor, I am committed to helping students broaden their exposure to real problems because I know how much that influenced me,” Mahmoudi says. “Our world has many challenges, but great teams and projects are making progress, such as the work by CIMMYT teams around the world. We all have a role to play and an idea that we can make a reality to improve global health.”

As an example, Mahmoudi is working with the non-profit Clean Challenge on a project to improve the waste system in Haiti. The initiative links with local teams in Haiti to develop a holistic system for handling trash, including composting organic waste to empower small holder farmers to improve their soil health and food security.

“Without my mentors, I would not have had the opportunity to be involved in these high impact initiatives. Wherever you are in your career make sure you are being mentored and also mentoring. I highly encourage students to find mentors and get involved in today’s greatest challenge, increasing food security.”

In addition to thanking the CIMMYT scientists who inspired her, Mahmoudi is deeply grateful for those who made her summer internship possible. “This would include the World Food Prize Foundation and especially Lisa Fleming, Ambassador Kenneth M. Quinn, the Ruan Family,” she says. “Your commitment to this high-impact, experiential learning opportunity has had lasting impact on my life.”

New study confirms the nutritional and health benefits of zinc-biofortified wheat in India

A recent study by India and US scientists shows that when vulnerable young children in India consume foods with wheat-enriched zinc, the number of days they spend sick with pneumonia and vomiting significantly diminishes.

Velu Govindan (CIMMYT) inspects zinc-fortified wheat. Photo: CIMMYT files.

An estimated 26 percent of India’s population lacks adequate micronutrients in their diets. Developed through biofortification — the breeding of crop varieties whose grain features higher levels of micronutrients — high-zinc wheat can help address micronutrient deficiencies.

The results of the study, which took place over six months, confirm zinc-enhanced wheat’s potential to improve the diets and health of disadvantaged groups who consume wheat-based foods, but the authors conclude that longer-term studies are needed.

In partnership with HarvestPlus and partners in South Asia, the International Maize and Wheat Improvement Center (CIMMYT) has bred and fostered the release in the region of six zinc-enhanced varieties that are spreading among farmers and seed producers.

Click here to read the full study.

The 2017 annual report of the Wheat Initiative: Achievements and transformation

The 2017 annual report of the Wheat Initiative: Achievements and transformation

The Wheat Initiative 2017 annual report describes exciting outcomes from a major assessment of the organization’s first five years. Results include changes in executive leadership, new hosting arrangements, and a revised structure and operational plan.

Amid these transformations, achievements included the initiation of the Wheat Ten Genomes Project, the publication of two volumes entitled “Achieving Sustainable Wheat Production”, a call for new projects under the International Wheat Yield Partnership, creation of a reference germplasm collection for durum wheat, and diverse advances by Expert Working Groups.

Click here to view and download the report.

Created in 2011 following endorsement from the G20 Agriculture Ministries, the Wheat Initiative provides a framework for strategic research on wheat in developed and developing countries. It fosters communication between the research community, funders and global policy makers, aiming at efficient and long-term investments for research and development goals and seeking to enhance access to information, resources and technologies.

The CGIAR Research Program on Wheat is a founding member of the Wheat Initiative.

 

Available now: The 2017 WHEAT annual report

 

In a highly readable format, the 2017 annual report of the CGIAR Research Program on Wheat presents achievements and an overview of Program finances.

In 2017, national research agencies in 19 countries released 63 new wheat varieties, derived all or in part from the research of CIMMYT and its principal WHEAT partner, the International Center for Agricultural Research in the Dry Areas (ICARDA).

We thank WHEAT’s numerous partners and funders for these and many other exciting achievements. In particular, stable CGIAR Window 1 and 2 funding enables WHEAT to react quickly to urgent needs, as well as to improve program level coordination and learning, ensuring impact. The following countries and organizations are Window 1 funders of CGIAR: Australia, the Bill & Melinda Gates Foundation, Canada, France, India, Japan, Korea, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the World Bank. Funding agencies of Australia, the United Kingdom (DFID), USA (USAID), and China contribute vital Window 2 funding.

To read the full report, please click here.

See also a detailed, technical report on 2017 WHEAT activities, finances and achievements submitted to CGIAR.

2018 Agricultural Innovation Program meeting: CIMMYT and partners’ achievements in Pakistan

Zero till wheat planting in Jaffarabad District.

By Kashif Syed, September 24

More than 70 agricultural professionals met in Islamabad, Pakistan, during September 4-5 to discuss agronomy and wheat activities under the Agricultural Innovation Program (AIP) for Pakistan. The event provided a platform for institutions involved in agronomy and the dissemination of agricultural technology and seed to share advances, discuss issues, and plan future undertakings.

“Crop productivity must be increased through research on innovative crop management techniques, varietal development and dissemination of better techniques and seed to farming communities,” said Dr. Yusuf Zafar, Chairman of PARC, addressing participants and touching upon a key theme of the event. He emphasized that precision agriculture, decision support systems, the use of drones, water productivity improvements and more widespread mechanization were on the horizon for Pakistani farmers, but that this would require active involvement of the public and private sectors.

Developments in zero tillage farming and ridge planting were highlighted in the two-day conference as conservation agriculture practices that are gaining traction in national wheat farming, according to Imtiaz Muhammad, CIMMYT representative and AIP project leader.

“In collaboration with a national network of 23 public and private partners, CIMMYT has reached more than 25,000 farmers through trainings on zero tillage, ridge planting, and direct seeded rice farming,” Imtiaz said, adding that support to farmers included nutrient management education the provision of seed planters. “These techniques are helping farmers to save water, avoid residue burning, and reduce their production costs.”

Collaboration with agricultural machinery manufacturers and other private sector actors is leading to local production of Zero Till Happy Seeders, which sow directly into unplowed fields and the residues of previous crops, according to Imtiaz. “Innovative approaches have also resulted in the production of 1,500 tons of wheat seed in 2018,” he explained.

Wheat seed production and farmers’ replacement of older varieties have progressed through local seed banks established by AIP in partnership with Pakistan’s National Rural Support Program (NRSP). Located in villages, the banks sell quality wheat seed for up to 12 percent less than local markets. “This is critical, because Pakistan’s wheat seed replacement is only 30 percent,” said Imtiaz, adding that there is a 50 percent gap between potential wheat yields and the national average yield for this crop.

The AIP will open more seed banks in remote areas of Pakistan, in conjunction with national partners. As well as producing and processing seed, the banks will provide farm machinery contract services and precision agriculture tools at subsidized rates.

Participants’ recommendations included adding straw spreaders to combine harvesters for rice, to facilitate the direct sowing of wheat after rice. They also suggested that agricultural service providers should help promote the direct seeding of rice and wheat with zero tillage implements. Participants observed that, in Baluchistan Province, support to farmers and service providers could increase the adoption of zero tillage for sowing wheat after rice and of precision land leveling, to improve irrigation efficiency and save water.

The AIP and partners will continue to promote water saving and nutrient management techniques, as well as building the capacity of farmers, national staff and agricultural service providers. Finally, those attending recommended that, for its second phase, AIP focus on the biofortification of wheat and rice, climate smart agriculture, decision support tools, women in farming, knowledge delivery, appropriate mechanization, nutrient management, weed management and water productivity.

AIP is the result of the combined efforts of the Pakistan Agriculture Research Council (PARC), the International Livestock Research Institute (ILRI), the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Rice Research Institute (IRRI), the World Vegetable Center (AVRDC), the University of California at Davis, and the International Maize and Wheat Improvement Center (CIMMYT). It is funded by the United States Agency for International Development (USAID). With these national and international partners on board, AIP continues to improve Pakistan’s agricultural productivity and economy.

Researchers find “hotspot” regions in the wheat genome for high zinc content

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat, according to a report published in Nature Scientific Reports on 10 September.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as 2 wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

The findings promise greatly to ease development of wheat varieties with enhanced levels of zinc, a critical micronutrient lacking in the diets of many poor who depend on wheat-based food, according to Velu Govindan, wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new report.

“A collaboration among research centers in India, Australia, the USA and Mexico, this work will expedite breeding for higher zinc through use of ‘hotspot’ genome regions and molecular markers,” said Govindan. “It also advances efforts to make selection for grain zinc a standard feature of CIMMYT wheat breeding. Because varieties derived from CIMMYT breeding are grown on nearly half the world’s wheat lands, ‘mainstreaming’ high zinc in breeding programs could improve the micronutrient nutrition of millions.”

More than 17 percent of humans, largely across Asia and Africa, lack zinc in their diets, a factor responsible for the deaths of more than 400,000 young children each year.

Often used in human disease research, the genome-wide association approach was applied in this study to zero in on genome segments — known as quantitative trait loci (QTLs) — that carry genes of interest for wheat grain zinc content, according to Govindan.

“The advantages of the genome-wide association method over traditional QTL mapping include better coverage of alleles and the ability to include landraces, elite cultivars, and advanced breeding lines in the analysis,” he explained. “Our study fully opens the door for the expanded use of wheat progenitor species as sources of alleles for high grain zinc, and the outcomes helped us to identify other candidate genes from wheat, barley, Brachypodium grasses, and rice.”
Farmers in South Asia are growing six zinc-enhanced wheat varieties developed using CIMMYT breeding lines and released in recent years according to Ravi Singh, head of the CIMMYT Bread Wheat Improvement Program.

Financial support for this study was provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. It was also supported by CGIAR Funders, through the Research Program on Wheat and the Research Program on Agriculture for Nutrition and Health. Research partners in India and Pakistan greatly contributed to this study by conducting high-quality field trials.