Pakistan wheat seed makeover: More productive, resilient varieties for thousands of farmers

Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

Nearly 3,000 smallholder wheat farmers throughout Pakistan will begin to sow seed of newer, high-yielding, disease-resistant wheat varieties and spread the seed among their peers in 2019, through a dynamic initiative that is revitalizing the contribution of science-based innovation for national agriculture.

Some 73 tons of seed of 15 improved wheat varieties recently went out to farmers in the provinces of Baluchistan, Gilgit Baltistan, Khyber Pakhtunkhwa, Punjab and Sindh, as part of the Agricultural Innovation Program (AIP), an initiative led by the International Maize and Wheat Improvement Center (CIMMYT) with funding from the US Agency for International Development (USAID).

“Our main goal is to help farmers replace outdated, disease-susceptible wheat varieties,” said Muhammad Imtiaz, CIMMYT scientist and country representative for Pakistan who leads the AIP. “Studies have shown that some Pakistan farmers grow the same variety for as long as 10 years, meaning they lose out on the superior qualities of newer varieties and their crops may fall victim to virulent, rapidly evolving wheat diseases.”

With support from CIMMYT and partners, participating farmers will not only enjoy as much as 20 percent higher harvests, but have agreed to produce and share surplus seed with neighbors, thus multiplying the new varieties’ reach and benefits, according to Imtiaz.

He said the new seed is part of AIP’s holistic focus on better cropping systems, including training farmers in improved management practices for wheat.

Wheat is Pakistan’s number-one food crop. Farmers there produce over 25 million tons of wheat each year — nearly as much as the entire annual wheat output of Africa or South America.

Annual per capita wheat consumption in Pakistan averages over 120 kilograms, among the highest in the world and providing over 60 percent of Pakistanis’ daily caloric intake.

The seed distributed includes varieties that offer enhanced levels of grain zinc content. The varieties were developed by CIMMYT in partnership with HarvestPlus, a CGIAR research program to study and deliver biofortified foods.

According to a 2011 nutrition survey, 39 percent of children in Pakistan and 48 percent of pregnant women suffer from zinc deficiency, leading to child stunting rates of more than 40 percent and high infant mortality.

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

“I am very excited to be part of Zincol-16 seed distribution, because its rich ingredients of nutrition will have a good impact on the health of my family,” said Munsif Ullah, a farmer from Swabi District, Khyber Pakhtunkhwa province.

Other seed distributed includes that of the Pakistan-13 variety for rainfed areas of Punjab, Shahkar-13 for the mountainous Gilgit-Baltistan, Ehsan-16 for rainfed areas in general, and the Umeed-14 and Zardana varieties for Baluchistan.

All varieties feature improved resistance to wheat rust diseases caused by fungi whose strains are mutating and spreading quickly in South Asia.

CIMMYT and partners are training farmers in quality seed production and setting up demonstration plots in farmers’ fields to create awareness about new varieties and production technologies, as well as collecting data to monitor the varieties’ performance.

They are also promoting resource-conserving practices such as balanced applications of fertilizer based on infrared sensor readings, ridge planting, and zero tillage. These innovations can save water, fertilizer, and land preparation costs, not to mention increasing yields.

“CIMMYT’s main focus in Pakistan is work with national wheat researchers to develop and spread better wheat production systems,” Imtiaz explained. “This includes improved farming practices and wheat lines that offer higher yields, disease resistance, and resilience under higher temperatures and dry conditions, as well as good end-use quality.”

CIMMYT’s partners in AIP include the National Rural Support Program (NRSP), the Lok Sanjh Foundation, the Village Friends Organization (VFO), the Aga Khan Rural Support Program (AKRSP), the National Agricultural Research Council (NARC) Wheat Program, the Wheat Research Institute (WRI) Faisalabad and Sakrand centers, AZRI-Umarkot, Kashmala Agro Seed Company, ARI-Quetta, BARDC-Quetta, and Model Farm Services Center, KP.

(Photo: CIMMYT/Ansaar Ahmad)

(Photo: CIMMYT/Ansaar Ahmad)

Researchers find “hotspot” regions in the wheat genome for high zinc content

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat, according to a report published in Nature Scientific Reports on 10 September.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as 2 wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

The findings promise greatly to ease development of wheat varieties with enhanced levels of zinc, a critical micronutrient lacking in the diets of many poor who depend on wheat-based food, according to Velu Govindan, wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new report.

“A collaboration among research centers in India, Australia, the USA and Mexico, this work will expedite breeding for higher zinc through use of ‘hotspot’ genome regions and molecular markers,” said Govindan. “It also advances efforts to make selection for grain zinc a standard feature of CIMMYT wheat breeding. Because varieties derived from CIMMYT breeding are grown on nearly half the world’s wheat lands, ‘mainstreaming’ high zinc in breeding programs could improve the micronutrient nutrition of millions.”

More than 17 percent of humans, largely across Asia and Africa, lack zinc in their diets, a factor responsible for the deaths of more than 400,000 young children each year.

Often used in human disease research, the genome-wide association approach was applied in this study to zero in on genome segments — known as quantitative trait loci (QTLs) — that carry genes of interest for wheat grain zinc content, according to Govindan.

“The advantages of the genome-wide association method over traditional QTL mapping include better coverage of alleles and the ability to include landraces, elite cultivars, and advanced breeding lines in the analysis,” he explained. “Our study fully opens the door for the expanded use of wheat progenitor species as sources of alleles for high grain zinc, and the outcomes helped us to identify other candidate genes from wheat, barley, Brachypodium grasses, and rice.”
Farmers in South Asia are growing six zinc-enhanced wheat varieties developed using CIMMYT breeding lines and released in recent years according to Ravi Singh, head of the CIMMYT Bread Wheat Improvement Program.

Financial support for this study was provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. It was also supported by CGIAR Funders, through the Research Program on Wheat and the Research Program on Agriculture for Nutrition and Health. Research partners in India and Pakistan greatly contributed to this study by conducting high-quality field trials.

New wheat gene map will speed breeding and help secure grain supplies

In breakthrough science using recent advances in sequencing, the International Wheat Genome Sequencing Consortium presents an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. To read article in Science, click here.

A BBC report on this momentous finding mentions CIMMYT as a leader in work to help meet the food demand of the 9.6 billion people expected to populate the earth by mid-century.

 

Wheat blast screening and surveillance training in Bangladesh

Photo: CIMMYT/Tim Krupnik

Fourteen young wheat researchers from South Asia recently attended a screening and surveillance course to address wheat blast, the mysterious and deadly disease whose surprise 2016 outbreak in southwestern Bangladesh devastated that region’s wheat crop, diminished farmers’ food security and livelihoods, and augured blast’s inexorable spread in South Asia.

Held from 24 February to 4 March 2018 at the Regional Agricultural Research Station (RARS), Jessore, as part of that facility’s precision phenotyping platform to develop resistant wheat varieties, the course emphasized hands-on practice for crucial and challenging aspects of disease control and resistance breeding, including scoring infections on plants and achieving optimal development of the disease on experimental wheat plots.

Cutting-edge approaches tested for the first time in South Asia included use of smartphone-attachable field microscopes together with artificial intelligence processing of images, allowing researchers identify blast lesions not visible to the naked eye.

“A disease like wheat blast, which respects no borders, can only be addressed through international collaboration and strengthening South Asia’s human and institutional capacities,” said Hans-Joachim Braun, director of the global wheat program of the International Maize and Wheat Improvement Center (CIMMYT), addressing participants and guests at the course opening ceremony. “Stable funding from CGIAR enabled CIMMYT and partners to react quickly to the 2016 outbreak, screening breeding lines in Bolivia and working with USDA-ARS, Fort Detrick, USA to identify resistance sources, resulting in the rapid release in 2017 of BARI Gom 33, Bangladesh’s first-ever blast resistant and zinc enriched wheat variety.”

Cooler and dryer weather during the 2017-18 wheat season has limited the incidence and severity of blast on Bangladesh’s latest wheat crop, but the disease remains a major threat for the country and its neighbors, according to P.K. Malaker, Chief Scientific Officer, Wheat Research Centre (WRC) of the Bangladesh Agricultural Research Institute (BARI).

“We need to raise awareness of the danger and the need for effective management, through training courses, workshops, and mass media campaigns,” said Malaker, speaking during the course.

The course was organized by CIMMYT, a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, with support from the Australian Center for International Agricultural Research (ACIAR), Indian Council of Agricultural Research (ICAR), CGIAR Research Program on Wheat (WHEAT), the United States Agency for International Development (USAID), and the Bangladesh Wheat and Maize Research Institute (BWMRI).

Speaking at the closing ceremony, N.C.D. Barma, WRC Director, thanked the participants and the management team and distributed certificates. “The training was very effective. BMWRI and CIMMYT have to work together to mitigate the threat of wheat blast in Bangladesh.”

Other participants included Jose Mauricio Fernandes, EMBRAPA-Passo Fundo, Brazil; Pawan Singh, CIMMYT wheat pathologist; T.P. Tiwari, Timothy J. Krupnik, and D.B. Pandit, CIMMYT-Bangladesh; Bahadur Mia, Bangladesh Agricultural University (BAU); and scientists from BMWRI and BARI, the Nepal Agricultural Research Council NARC, and Assam Agricultural University (AAU), India.

Goat grass gives wheat breeders an edge

31 January 2018
by Laura Strugnell

A commentary published on 30 January in the leading science journal Nature Plants highlights the importance of an ancient grass species for wheat breeding. The commentary was sparked by the recent publication of a reference genome from Aegilops tauschii, also called goat grass.

Bread wheat was created some 10,000 years ago by a natural cross of more simple, primitive wheats with a sub-species of goat grass. As such, goat grass genes constitute a major component of the very large wheat genome. The sequencing of goat grass DNA opens the way for wheat breeders to apply a number of advanced approaches to improve the speed and precision of wheat breeding for important traits that may be found in the goat grass segment of the wheat genome.

The International Maize and Wheat Improvement Center (CIMMYT) and the International Centre for Agricultural Research in the Dry Areas (ICARDA) have produced many wheat x grass crosses, recreating the original, natural cross but using other goat grass species and thus greatly expanding wheat’s diversity. Wheat lines derived from those crosses have since been used in breeding programs worldwide and have helped farmers to boost yields by up to 20 percent. Goat grass is known for being highly adaptable and disease tolerant, so the crosses endow wheat with similar qualities. Varieties from these crosses make up over 30 percent of international seed stores.

Researchers expect that the sequencing of this grass species’ DNA will facilitate advanced approaches such as “speed breeding” – a technique that uses controlled variables to achieve up to seven rounds of wheat crops in one year. This will help allow wheat breeding to keep up with the rising global demand for the crop and to address the challenges of new, virulent diseases and more extreme weather.

Read the Nature Plants article: The goat grass genome’s role in wheat improvement. 2018. Rasheed, A., Ogbonnaya, F.C., Lagudah, E., Appels, R., He, Z. In: Nature Plants.

Now available: 2016-17 Annual Report of the International Wheat Yield Partnership

Wheat breeding lines from the IWYP Hub at CIMMYT are out-yielding local checks in tests, validating the strategy of combining high biomass individuals with those that feature better grain filling attributes. The lines are being sent to public and private breeding programs worldwide. Read more about this and other exciting IWYP activities and outputs:

Annual Report

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

By Mike Listman/CIMMYT

EL BATAN, Mexico (January 25, 2017)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.

Advances toward breaking the wheat yield barrier: IWYP 2015-16 annual report

 By Jeff Gwyn/IWYP

COLLEGE STATION, Texas (September 26,2016)- In addition to incisive background on IWYP, including its model, mission and goals, this report covers first-year activities and advances from thcover-iwyp-ar-2015-16e partnership’s Science Program and how research outputs are uses to generate added value.

Dr. Richard Flavell FRS, CBE, who chairs the Science Impact and Executive Board of IWYP, states: “Being a part of such a worthy endeavor as IWYP that seeks to impact global food and nutritional security by seeking solutions with cutting-edge science is exhilarating. This is a unique opportunity to employ and validate a new way of working together internationally to achieve common goals that address critical needs. We are confident that we have laid the necessary groundwork and will remain focused and committed to realize our collective success.”

To view or download a copy of the IWYP Annual Report follow the link: https://iwyp.org/annual-report/