CIMMYT wheat scientists receive top honors from US agricultural scientists

Hans-Joachim Braun and Alexey Morgunov receive awards and fellowships at annual meeting of crop science peers.

This article by Marcia McNeil was originally posted on the CIMMYT website.

CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)
CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)

Two scientists working in the world’s leading public wheat breeding program at the International Maize and Wheat Improvement Center (CIMMYT) have been recognized with awards and fellowships this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, has been honored with the American Society of Agronomy’s International Agronomy Award.

Alexey Morgunov, CIMMYT principal scientist and head of the Turkey-based International Winter Wheat Improvement Program (IWWIP) received the distinction of Fellow from the Crop Science Society of America. Braun was also distinguished with this fellowship.

Excellence in agronomy

The American Society of Agronomy’s International Agronomy Award recognizes outstanding contributions in research, teaching, extension, or administration made outside of the United States by a current agronomist. Braun received the distinction during an awards ceremony and lecture on November 12, 2019. The award committee made its selection based on criteria including degrees, professional positions, and contributions and service to the profession such as publications, patents, and efforts to develop or improve programs, practices, and products.

The award recognizes Braun’s achievements developing and promoting improved wheat varieties and cropping practices that have benefited hundreds of millions of farmers throughout Central Asia, South Asia and North Africa. Nearly half the world’s wheat lands overall — as well as 70 to 80% of all wheat varieties released in Central Asia, South Asia, West Asia, and North Africa — are derived from the research of CIMMYT and its partners.

“I am honored to be recognized by my fellow agronomists,” Braun said. “This award highlights the importance of international research collaboration, because the food security challenges we face do not stop at national borders.”

Braun began his 36-year CIMMYT career in Mexico in 1983. From 1985 to 2005, he led the International Winter Wheat Improvement Program in Turkey, implemented by CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA). As director of CIMMYT’s Global Wheat Program since 2004 and the CGIAR Research Program on Wheat since 2014, he is responsible for the technical direction and implementation of a program that develops and distributes wheat germplasm to more than 200 collaborators in more than 100 countries, grown on over half the spring wheat area in developing countries.

Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)

Crop fellows

Braun and Morgunov were also chosen as Fellows, the highest recognition bestowed by the Crop Science Society of America. Members of the society nominate worthy colleagues based on their professional achievements and meritorious service. Fellows are a select group: only three out of every 1,000 of the society’s more than 4,000 active and emeritus members receive the honor.

Morgunov joined CIMMYT in 1991 as a spring wheat breeder, working with former Global Wheat Program Director and World Food Prize laureate Sanjaya Rajaram. In 1994, he moved to Turkey to work as winter wheat breeder, and then to Kazakhstan, where he worked to develop and promote new wheat varieties for the Central Asia and the Caucasus region. He has led the International Winter Wheat Improvement Program in Turkey since 2006. In this role, he has been responsible for the release of more than 80 varieties in the region. He also completed a national inventory for wheat landraces in Turkey.

Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)
Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)

“I am pleased to be recognized as [a Crop Science Society of America] Fellow,” Morgunov said. “I hope this award brings more attention to the importance of finding, saving and using the vast diversity of crop varieties in the world, for resilient crops and healthy food for all.”

Braun and Morgunov were formally recognized as Fellows on November 13.

The annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field. This year’s meeting was held in San Antonio, Texas.

Head of CIMMYT Wheat Germplasm Bank honored at gathering of crop science peers

Thomas Payne delivering a presentation at the Frank N. Meyer Medal for Plant Genetic Resources Breakfast. Photo credit: Kevin Pixley/CIMMYT

Thomas Payne, head of the Wheat Germplasm Bank at the International Maize and Wheat Improvement Center (CIMMYT), was awarded the Frank N. Meyer Medal for Plant Genetic Resources this morning at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America in San Antonio, Texas.

The Frank N. Meyer Medal recognizes contributions to plant germplasm collection and use, as well as dedication and service to humanity through the collection, evaluation or conservation of earth’s genetic resources. The award was presented by Clare Clarice Coyne, U.S. Department of Agriculture (USDA) research geneticist.

As an award recipient, Thomas Payne delivered a lecture that touched on the philosophy, history and culture surrounding plant genetic diversity and its collectors, and CIMMYT’s important role in conserving and sharing crop diversity.

CIMMYT scientist Alexey Morgunov, Thomas Payne’s sister Susan Payne, Thomas Payne. Photo credit: Kevin Pixley/CIMMYT

Thomas Payne has focused his career on wheat improvement and conservation. In addition to leading CIMMYT’s Wellhausen-Anderson Wheat Genetic Resources Collection, one of the world’s largest collection of wheat and maize germplasm, he manages the CIMMYT International Wheat Improvement Network.  He is the current Chair of the Article 15 Group of CGIAR Genebank Managers, and has served as Secretary to the CIMMYT Board of Trustees.  His association with CIMMYT began immediately after obtaining a PhD at the University of Nebraska-Lincoln in 1988, and he has held positions for CIMMYT in Ethiopia, Mexico, Syria, Turkey and Zimbabwe. 

“CIMMYT is the largest distributor of maize and wheat germplasm worldwide, with materials emanating from its research and breeding programs, as well as held in-trust in the germplasm bank.  The Meyer Medal is a reflection of the impact CIMMYT makes in the international research community —  and in farmers’ fields throughout the developing world,” he said.

Located at CIMMYT headquarters outside Mexico City, the CIMMYT Wheat Germplasm Bank contains nearly 150,000 collections of seed of wheat and related species from more than 100 countries. The collections preserve the diversity of unique native varieties and wild relatives of wheat and are held under long-term storage for the benefit of humanity, in accordance with the 2007 International Treaty on Plant Genetic Resources for Food and Agriculture. They are also studied and used as a source of diversity to breed for crucial traits such as heat and drought tolerance, resistance to crop diseases and pests, grain yield productivity and grain quality. Seed is freely shared on request to researchers, students, and academic and development institutions worldwide.

The Frank N. Meyer Medal for  Plant Genetic Resources. Photo credit: Kevin Pixley/CIMMYT

In his remarks, Thomas Payne also highlighted the story of Frank N. Meyer, for whom the award is named. Meyer, an agricultural explorer for the USDA in the 1900s, spent a decade traveling under harsh conditions through China to collect new plant species suitable for production on America’s expanding farmland. Among more than 2,500 plants that he introduced to the U.S. — including varieties of soybeans, oats, wild pears, and asparagus — the Meyer lemon was named in his honor. As Payne pointed out, Meyer worked during a historical period of great scientific discoveries, including those by his contemporaries Marie Curie and the Wright brothers.

Thomas Payne with CIMMYT Director of Genetic Resources Kevin Pixley
Thomas Payne with Head of CIMMYT Maize Germplasm Bank Denise Costich. Photo credit: Kevin Pixley/CIMMYT

Among those attending the ceremony were Thomas Payne’s sister, Susan Payne and CIMMYT colleagues Kevin Pixley, director of Genetic Resources; Denise Costich, head of the CIMMYT Maize Germplasm Bank; and Alexey Morgunov, head of the Turkey-based International Winter Wheat Improvement Program.

The head of CIMMYT’s Global Wheat Program Hans-Joachim Braun and CIMMYT scientist Alexey Morgunov are also receiving honors or awards this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. The meeting convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field.

Digital Warning System Boosts Resilience in Bangladesh

Farmers around the world face a constant threat from crop diseases, but digital tools are making it easier for farmers to prepare for outbreaks.

This story by Matt O’Leary was originally published on the USAID Feed the Future blog.

Farmers around the world face constant threats from crop pests and diseases. One such threat is wheat blast, a disease that attacks maturing grains, causing them to shrivel. Fortunately, new advances in technology and modeling are making it easier to identify, prevent and control diseases like this.

Outbreaks of wheat blast in South Asia — a region where people consume over 100 million tons of wheat each year — have a major impact on food security and income. In 2016, a wheat blast outbreak struck South Asia unexpectedly. In Bangladesh alone, 25 to 30 percent of wheat was negatively affected, threatening progress in regional food security. Blast disease has the potential to reduce wheat production by up to 85 million tons in Bangladesh — a projected $13 million loss in farmers’ profits each year when an outbreak occurs.

Luckily, with support from Feed the Future and its partners, there is a reason for hope. A new digital early warning system can help farmers and scientists get ahead. It integrates mathematical models that, when combined with weather forecasts, can simulate disease growth and risks to provide an advanced warning about potential wheat blast outbreaks. With three years of data already recorded, the system — originally piloted in Brazil, where the wheat blast originated in 1985 — is being rolled out across Bangladesh to deliver real-time disease updates to extension workers and smallholder farmers via SMS and voice message.

“Through collaborative research with Professor Jose Mauricio Fernandes, a crop pathologist from Embrapa, and Mr. Felipe de Vargas, a computer scientist with Universidade de Passo Fundo, we have established a model to identify areas at risk of wheat blast infection with five days advanced warning,” said Timothy J. Krupnik, senior scientist and systems agronomist at the International Maize and Wheat Improvement Centre (CIMMYT). “It can provide Bangladesh’s 1.2 million wheat farmers a head start against this disease.”

This data-driven early warning system analyzes environmental conditions for potential disease development in crucial wheat-growing areas of Bangladesh and Brazil. Using this information, the system generates forecast maps and automatic advice for farmers of where and when an outbreak is most likely to strike.

This innovation can also save wheat farmers money. Many apply fungicides on a calendar basis — between two to three times per season — as a preventative measure. This is costly and risks negative environmental effects. Now, the early warning system can push advice to extension agents and farmers, indicating when disease control is really needed.

“Our hope is that it will help reduce unnecessary fungicide use and empower farmers to implement cost-effective and resilient practices to overcome wheat blast risks instead,” Krupnik said.

With wheat as a key crop in Bangladesh, the digital warning system will help prepare farmers to get a head start to reduce the impact of wheat blast with crucial advice from extension agents in areas of need.

New publications: Special collection on wheat genetics and breeding

Researchers present highlights from 40 years of collaboration on wheat genomics, breeding for disease resistance and quality improvement.

This article by Emma Orchardson was originally posted on the CIMMYT website.

Wheat rust expert Bob McIntosh, of the Plant Breeding Institute, University of Sydney, Australia, examining rust symptoms on a wheat line in the field at the Kenya Agricultural Research Institute’s (KARI) Njoro research station in Kenya. Photo: CIMMYT/Petr Kosina

Global wheat production is currently facing great challenges, from increasing climate variation to occurrence of various pests and diseases. These factors continue to limit wheat production in a number of countries, including China, where in 2018 unseasonably cold temperatures resulted in yield reduction of more than 10% in major wheat growing regions. Around the same time, Fusarium head blight spread from the Yangtze region to the Yellow and Huai Valleys, and northern China experienced a shortage of irrigated water.

In light of these ongoing challenges, international collaboration, as well as the development of new technologies and their integration with existing ones, has a key role to play in supporting sustainable wheat improvement, especially in developing countries. The International Maize and Wheat Improvement Center (CIMMYT) has been collaborating with China on wheat improvement for over 40 years, driving significant progress in a number of areas.

Notably, a standardized protocol for testing Chinese noodle quality has been established, as has a methodology for breeding adult-plant resistance to yellow rust, leaf rust and powdery mildew. More than 330 cultivars derived from CIMMYT germplasm have been released in the country and are currently grown over 9% of the Chinese wheat production area, while physiological approaches have been used to characterize yield potential and develop high-efficiency phenotyping platforms. The development of climate-resilient cultivars using new technology will be a priority area for future collaboration.

In a special issue of Frontiers of Agricultural Science and Engineering focused on wheat genetics and breeding, CIMMYT researchers present highlights from global progress in wheat genomics, breeding for disease resistance, as well as quality improvement, in a collection of nine review articles and one research article. They emphasize the significance of using new technology for genotyping and phenotyping when developing new cultivars, as well as the importance of global collaboration in responding to ongoing challenges.

In a paper on wheat stem rust, CIMMYT scientists Sridhar Bhavani, David Hodson, Julio Huerta-Espino, Mandeep Randawa and Ravi Singh discuss progress in breeding for resistance to Ug99 and other races of stem rust fungus, complex virulence combinations of which continue to pose a significant threat to global wheat production. The authors detail how effective gene stewardship and new generation breeding materials, complemented by active surveillance and monitoring, have helped to limit major epidemics and increase grain yield potential in key target environments.

In the same issue, an article by Caiyun Lui et al. discusses the application of spectral reflectance indices (SRIs) as proxies to screen for yield potential and heat stress, which is emerging in crop breeding programs. The results of a recent study, which evaluated 287 elite lines, highlight the utility of SRIs as proxies for grain yield. High heritability estimates and the identification of marker-trait associations indicate that SRIs are useful tools for understanding the genetic basis of agronomic and physiological traits.

Other papers by CIMMYT researchers discuss the history, activities and impact of the International Winter Wheat Improvement Program, as well as the ongoing work on the genetic improvement of wheat grain quality at CIMMYT.

Find the full collection of articles in Frontiers of Agricultural Science and Engineering, Volume 6, Issue 3, September 2019.

Scientists develop an early warning system that delivers wheat rust predictions directly to farmer’s phones

New research describes a revolutionary new early warning system that can predict and mitigate wheat rust diseases in Ethiopia.

One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)

Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.

Reported last week in Environmental Research Letters, the new early warning system, which is the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current rust situation and forecast wheat rust up to a week later.

The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).

Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can clearly be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023. However increasing yields has its challenges.

One major challenge to wheat production are wheat rusts. The fungal diseases can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.

The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time – a bit like the flu virus,” explained Dave Hodson, principal scientist CIMMYT and co-author of the research study.

In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, however the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.

The early warning system works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK). This is complemented by crowd sourced phone surveys using ATA’s 8028 Farmers’ Hotline. 

The University of Cambridge and the UK Met office then provide automated 7 day advanced forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.

Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)

Interestingly, the dispersal model was originally developed by the UK Met Office for volcanic eruptions and nuclear accidents to predict where particles would be dispersed in the air. The University of Cambridge and the UK Met Office then adapted the model to predict where wheat rust spores would be dispersed and to provide a 7-day forecast.

 “It’s world-class science from the UK being applied to real world problems,” said Hodson.

All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and the national authorities and the information also gets passed on to researchers and farmers.

“If there’s a high risk of wheat rust developing, farmers will get a targeted alert by SMS sent by ATA. This gives the farmer about three weeks to take action,” explained Hodson. The ATA Farmers’ Hotline now has over four million farmers and extension agents registered, enabling rapid information dissemination throughout Ethiopia.

“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.

Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)

The system puts Ethiopia at the forefront of early warning systems for wheat rust.

“Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson.

At the same time, CIMMYT and partners have been racing to develop wheat rust resistant varieties to allow farmers to avoid the diseases altogether. Recent estimates, based on DNA fingerprinting, indicate that these rust resistant varieties have been widely adopted throughout Ethiopia, and that varietal replacement is occurring frequently. 

The near real-time diagnostics tool MARPLE (Mobile And Real-time PLant disEase diagnostics) is also making huge leaps in wheat rust detection. Strains of yellow rust can be identified in just 48 hours using this suitcase sized kit – a process that normally takes months. The researchers recommended that this new technology be used in conjunction with the Early Warning System, to allow more accurate assessments and predictions of disease spread in Ethiopia.

Read the full article:

https://doi.org/10.1088/1748-9326/ab4034

Read the press release on CIMMYT.org. 

This study was made possible through the support provided by the BBSRC GCRF Foundation Awards for Global Agriculture and Food Systems Research, which brings top class UK science to developing countries, the Delivering Genetic Gains in Wheat (DGGW) Project managed by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID). The Government of Ethiopia also provided direct support into the early warning system.

Bangladesh leads the way in global fight against wheat blast

An ongoing project was praised for its swift progress in the fight against wheat blast in Bangladesh and South Asia

Eric Huttner, ACIAR Research Program Manager speaking at last month’s mid-term review on wheat blast in Bangladesh and South Asia

At a mid-term review event last month at the BRAC Learning Centre in Dinajpur, Bangladesh, professionals from the Bangladesh Ministry of Agriculture, the Bangladesh Wheat and Maize Research Institute (BWMRI), the Bangladesh Agriculture Research Institute (BARI), the Department of Agriculture Extension (DAE), the Krishi Gobeshona Foundation (KGF), the Bangladesh Agriculture Development Corporation (BADC) and the International Maize and Wheat Improvement Center (CIMMYT) discussed progress made in the battle against wheat blast in Bangladesh and South Asia.

Wheat blast is a fast-acting and devastating fungal disease that threatens wheat production and food security in South America and South Asia. The disease, which originated in South America and first appeared in Bangladesh in 2016, can by dispersed by wind across large distances and spores can be seed borne. There is deep concern among scientists that the disease could spread further across South Asia. A 2018 ex-ante analysis found that in Bangladesh, India and Pakistan wheat blast could potentially cause losses of 0.89 – 1.77 million tons each year, with 7 million hectares of growing area at risk.

In 2017, CIMMYT, BWMRI and the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF) in Bolivia joined forces in an international effort to tackle wheat blast through widespread adoption of blast resistant wheat varieties.

The project, funded by the Australian Centre for International Agricultural Research (ACIAR) addresses wheat blast in Bangladesh and South Asia through the identification of new sources of resistance genes for wheat blast and development of wheat blast resistant varieties. The germplasm, genes and markers, and genetic information developed through the project are shared with South Asian national wheat breeding programs and other researchers, finally ending up in farmers’ fields as resistant varieties.

The review meeting was chaired by BWMRI Director General Israil Hossain, and featured remarks by Bangladesh’s Additional Secretary of the Ministry of Agriculture Kamala Ranjan Das.

“This project has over-delivered on its milestones,” said Eric Huttner, ACIAR Research Program Manager and lead of the review. “It’s very likely that the project will reduce the risk of blast on wheat production in Bangladesh.”

Early impacts in terms of research capacity and infrastructure are very clear:

  • The project-established precision phenotyping platform in Jashore — the first of its kind in Bangladesh and the region —  is running at full capacity, screening for blast in wheat germplasm materials from as far away as China, the United States and Europe.  The facility currently has the capacity to evaluate almost 5,000 wheat germplasm materials per season and there are ongoing plans for expansion and improvement.
  • Sixty-nine researchers and development professionals, including 9 women, have benefited from the capacity development activities.
  • Molecular research is also making progress. Pawan Singh, project leader and head of Wheat Pathology at CIMMYT, noted that the rapid response was possible due to collective and collaborative action by research partners in this project and beyond.

Meeting attendees emphasized the urgency and importance of the project, which is set to conclude in 2021, in the battle against a fast-moving and devastating disease.

As Huttner told attendees, “Now the resistant or tolerant materials need to be efficiently deployed for breeding high-performance wheat varieties that reach stakeholders as early as possible.”

The Identification of sources of resistance to wheat blast and their deployment in wheat varieties adapted to Bangladesh project is funded by the Australian Centre for International Agricultural Research, with Bangladesh Wheat and Maize Research Institute and the National Institute of Agricultural and Forestry Innovation as key partners. More information about the project can be found on the project factsheet.

Experts gather in Turkey to share findings on the diversity and health benefits of wheat

Highlights from the International Conference on Wheat Diversity and Human Health which took place in Istanbul this week

Durum wheat spikes, Ciudad Obregon, Mexico. Photo credit: CIMMYT/Alfonso Cortés

Istanbul hosted a milestone conference this week convening experts from the region and the globe to examine the link between wheat and human health.  Although wheat is the second most popular food crop in the world, and a vital source of food and nutrition for humans dating from the earliest days of agriculture, its reputation as a health food has taken a hit in western popular culture in recent times.

The International Conference on Wheat Diversity and Human Health, makes a strong, scientifically supported case for a range of health benefits from wheat and its countless varieties, relatives and the foods made from them.

Beyond the well-publicized benefits of consuming fiber from whole grain wheat products – including lower risk of coronary disease, diabetes, hypertension, obesity, Type 2 diabetes and colon cancer – scientists at the conference affirmed that wheat also contains compounds such as phenolics, flavonoids and carotenoids that:

  • have antioxidant and anti-inflammatory properties,
  • control obesity,
  • reduce the risk of cancer and chronic diseases,
  • have a beneficial effect on the working memory,
  • can prevent neurological diseases such as Alzheimer’s and Parkinson’s diseases,
  • can delay aging and
  • can prevent Vitamin A deficiency, among many other attributes.


As remarkable as these benefits may be, wheat’s potential for improving nutrition and health worldwide is even greater.   

A number of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT) presented evidence this week on new paths to further increase and promote these traits in wheat.

Velu Govindan speaking about his research on biofortification at this week’s conference. Photo credit: Fatih Özdemir
  • CIMMYT senior scientist and wheat breeder Velu Govindan explained the progress and potential of breeding wheat with enhanced levels of grain zinc and iron as a cost-effective, sustainable solution to malnutrition.   To date, more than 12 biofortified high zinc wheat varieties have been released, reaching close to 1 million households in target countries such as India and Pakistan. With the help of advanced genomics and speed breeding these varieties have the potential to become the standard for farmers, particularly in developing countries.
  • CIMMYT cropping systems agronomist ML Jat and his co-authors demonstrated how farming techniques that improve soil health, diversify production and enhance growing environments also increase the nutritional quality of wheat – critical in the face of climate change and higher CO2 concentrations that are projected to reduce the protein content of rice and wheat by almost 8% by 2050.
  • Maria Itria Ibba, head of CIMMYT’s wheat quality lab, shared an idea for helping improve global dietary fiber consumption without radically changing eating habits: develop wheat with increased Arabinoxylans (AX) — fiber components associated with reduced risk of diabetes, cholesterol, cardiovascular disease and colon cancer located in the endosperm, the part of the grain most often used in refined flour. Her preliminary findings suggest that AX content is controlled by a relatively small number of genes, which could be identified through molecular markers to effectively select for this trait in the breeding process.
Maria Itria Ibba speaking about her research on improving dietary fiber consumption. Photo credit: Fatih Özdemir

Protecting and promoting wheat diversity

Many presenters discussed ways to protect and promote wheat’s wide diversity – from modern varieties, traditional landraces, ancient grains, colored wheat and different species – all of which have huge potential to enrich our diet.

  • Alex Morgunov, leader of the International Winter Wheat Improvement Program and a conference organizer, described his research in Afghanistan – where wheat is the life-sustaining food grain and no meal is complete without a slice of wheat bread — to protect, improve, and distribute its rare and numerous valuable wheat landraces. These ancient varieties bring diversity, distinct baking characteristics and nutrition from farmer fields to bakeries and to research stations, where they are employed in breeding efforts to capture their unique desirable traits.

As Tom Payne, head of CIMMYT’s Wheat Germplasm Collections pointed out, diversity is a crucial element to health, and genebanks such as CIMMYT’s safeguard some of the largest and most widely used collections of crop diversity in the world, critical to ending hunger and improving food and nutrition security.

Hans-Joachim Braun, director of CIMMYT’s global wheat program and co-chair of the event concluded the conference with remarks on future perspectives for wheat diversity and human health. He highlighted how 830 million people in the world – 11% of the population- still do not have enough to eat.

Hans Braun gives his concluding remarks. Photo credit: Fatih Özdemir

The International Conference on Wheat Diversity and Human Health took place from Oct 22 – 24 in Istanbul, Turkey.

“Pilots never fail, pilots never scale:” Why the global development community needs a more realistic approach to reaching billions

This article by Lennart Woltering  was originally posted on NextBillion.net as part of the series “Scaling Up Without Selling Out.” The CGIAR Research Program on Wheat (WHEAT) is a funder of this work.

Wheat plots under trial at CIMMYT’s Norman E. Borlaug Experiment Station, Ciudad Obregon. Photo credit: CIMMYT.

We live in an era that calls for large-scale social and environmental transformation. But society has taken only meager steps towards producing the unprecedented changes needed to achieve the Sustainable Development Goals. Those of us working on sustainable rural development understand that we face enormous challenges: from ending hunger and improving nutrition, to preserving vital ecosystems, tackling climate change, empowering women and ending poverty. But we are still caught up in a 20th century paradigm that sees the world as a logical, linear, technology-centric system. This approach has hardly worked in the past, and it will certainly fail in the future. We need to change the underlying system. We need a new way of working.

In a new paper, my colleagues and I at the International Maize and Wheat Improvement Center (CIMMYT) joined up with development experts to argue that agricultural development projects should stop focusing narrowly on changing farming conditions within a specific project context. For too long, the dominant approach has been to develop new agricultural practices and technologies, prove that they work, spread them to a few hundred farmers through controlled pilot projects, and then hope this is enough to convince governments, industry and millions of smallholder farmers to do things differently. This is akin to inventing the mobile phone but ignoring the need for electricity, cellular towers, network providers, or any of the other supporting elements that enable the use of the phone.

Instead, we argue that projects should be seen as vehicles for changing the underlying system that enables a technology to be successfully used by millions. This means acknowledging and engaging with the complex array of real-world elements that comprise these systems, such as infrastructure, market forces, politics, people and power relationships. We do not suggest that project implementers become experts in all of these things, but rather that they need to take them into account when developing scalable solutions, by studying the best scaling process for a particular context, and positioning their contributions within that wider context.

We need to change course and embrace new attitudes, new skills and new ways of collaborating if we want to produce sustainable systems change at scale. And one important part of this process involves reconsidering our approach to pilot programs.

Pilots never fail, pilots never scale
Most pilots test whether an innovation works in a particular context. We liken this to building a greenhouse (a controlled environment) within a landscape (the real world). Pilot projects rely heavily on external resources and expertise, and are shielded from real world challenges like politics, regulations, market forces and finance. A crucial feature of pilot programs, and a key limitation, is that they don’t face the same pressure as actual programs to reach as many people as possible within a limited timeframe. That means they aren’t generating important lessons about the conditions needed to enable sustainable long-term adoption.

As a result, when the time comes to scale up a successful pilot project, we generally take one of two paths:

One path involves building a bigger greenhouse, which means expanding the controlled environment by doing more of the same with more money. But this approach is expensive, and unlikely to produce lasting change. The expanded project may indeed reach an impressive number of households, but this is no guarantee that they can and will continue to use a technology after the project ends. And this also doesn’t guarantee that adoption will spread.

The other conventional approach to scaling a pilot program is to simply remove the greenhouse and assume the innovation is so good that it will spontaneously scale itself. But as any gardener knows, a plant will not easily survive under real conditions once a greenhouse is removed. Likewise, farming communities are unlikely to continue using a new practice or technology if the surrounding system remains unchanged, since it is this very system that shaped their conventional way of farming.

Steps for achieving large scale – and lasting – change
So what would a more effective approach to scale look like? We reviewed decades of experience and insights from a number of sectors, including agriculture, health, education, nutrition and urban planning. We identified the following strategies that can help rural development projects change their approach towards achieving impact:

  1. Adopt a new mindset: Understand that overlapping economic social, technical and political systems shape peoples’ choices and behaviors. Recognize the stakeholder dynamics that determine the present situation. You need to understand the key players and rules of the game in order to engage with – and influence – them.
  2. Design for scale from the start: Asking “Does the pilot project work?” is not enough. Start by asking “What happens beyond the pilot project, if it works?” Then work with strategic local partners that are willing and able to provide public/private funding and leadership to sustain the initiative once the pilot project ends. But keep in mind: This also means considering – and planning for – the unintended consequences that come along with big change initiatives.
  3. Clarify your role: Scaling means intervening into a range of elements within a system, and implementing institutions need to recognize their strengths and limitations in doing so. If they find that they lack any key capabilities that could reduce a program’s effectiveness, they should collaborate strategically with others to better influence the many different parts of the system.
  4. See pilots as building blocks: Rather than viewing pilot projects as distinct entities, see them as part of a bigger ecology of initiatives to achieve long-term change – for example, as elements of a sector or country development strategy, or of other emerging market-led initiatives.

The global agricultural development community is starting to come to grips with this new mindset and way of working. For instance, in Zimbabwe, CIMMYT and its partners are taking a fresh approach to encouraging small-scale farm mechanization. We are working on strengthening a wide range of functions that are needed to support a market for two-wheeled tractors. This includes creating demand for machinery among local smallholders through farmer-to-farmer demonstrations, field days and ICT solutions. The initiative also offers technical and business development training to service providers, mechanics, artisans and manufacturers, and develops the capacity of existing vocational training centers to provide ongoing machinery trainings. Private sector partners can access valuable insights and intelligence on the performance of different machines and their costs and benefits, and can also access profiles of potential customers, thus spurring demand. And aspiring service providers are connected to financial institutions that can provide loans for machinery purchase. This approach goes far beyond the typical technology-oriented pilot project, and shows the positive steps being taken to engage with, and ultimately disrupt, the different elements of the underlying system.

Pilot projects last 2-4 years, but scaling a successful pilot to national application can take 15 years. While we are seeing more initiatives move away from the technology transfer mindset focused only on products, end users and numbers, and towards a more systems-focused approach, critical mass is a long way off. Agricultural development organizations and their funders need to urgently change course and position themselves as key players in changing the system at scale, rather than pushing an innovation into the rigid, incumbent system. This requires linking up with the right partners on the ground, who can help make this broader approach to sustainable development into the “new normal.”

Acknowledgments: This work was funded by the CGIAR Research Programs MAIZE (www.maize.org) and WHEAT (www.wheat.org) coordinated by the International Maize and Wheat Improvement Center (CIMMYT) in Mexico. The authors worked in collaboration with Management Systems International (MSI) and the PPPLab (supported by the Directorate General for International Cooperation (DGIS) and SNV Netherlands Development Organization). The German Federal Ministry for Economic Cooperation and Development (BMZ) supported the work through the Integrated Expert program of Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of CRP MAIZE, CRP WHEAT, GIZ, DGIS or SNV.

Fellowship for women agricultural researchers in MENA sets future leaders on the path to success

The first cohort of Fellows in the Arab Women Leaders in Agriculture fellowship program.

In May of this year, 22 women from the Middle East and North Africa (MENA) region won a competitive fellowship in agricultural research, sponsored by the International Center for Biosaline Agriculture (ICBA), the Bill & Melinda Gates Foundation, the Islamic Development Bank (IsDB) and the  CGIAR Research Program on Wheat (WHEAT).

 The Arab Women Leaders in Agriculture (Awla) fellowship program, the first of its kind, is designed to develop a cadre of aspiring Arab women researchers who are equipped with the knowledge and skills to make a positive difference in agriculture sustainability, in their countries in particular and the Arab region as a whole.

The cornerstones of the Awla fellowship are team-based capstone projects designed to put the skills, tools and knowledge gained during the program to practical use. Diverse teams of Fellows from varying nationalities and backgrounds are expected to produce a solution to a key challenge to women in agriculture, guided by the mentors, the Awla Steering Committee and selected stakeholders nominated by the Fellows. Fellows can choose from a variety of interdisciplinary topics as well as agriculture specific, as long as their topic of choice has a convincing value proposition. At the end of the fellowship program, the teams will present their capstone projects to relevant stakeholders to seek funding.

The first cohort of Awla Fellows — which includes researchers from Algeria, Egypt, Jordan, Lebanon, Morocco and Tunisia – met from June 30 to July 7 in Tunisia for an introductory workshop to kick off their 10-month fellowship. WHEAT is funding two students in this cohort.

The Awla Fellows are a highly successful group of agricultural engineers, professors, wheat breeders and working researchers in agronomy, biotechnology, soil sciences and other technical agricultural fields.  The orientation workshop gave them the opportunity to get to know each other and their selected mentors, participate in trainings designed to build their leadership and project management capacity, and gain an understanding of the online coursework and assignments that will make up their training.

Leadership and guidance
The workshop began with 6 days of training in positive psychology applications in leadership – a course that covered how to integrate concepts of resilience, creativity, finding meaning and purpose and more into both their interpersonal relationships and their organization management.

Next came a 3-day course to introduce the concepts of design thinking, a process for creative problem solving that encourages organizations to focus on the human needs of the people for whom they are creating. The Awla Fellows were encouraged to use these concepts to brainstorm notes for their team-based capstone projects, which involved addressing a key challenge faced by women in agriculture.

Mentorships
An important objective of the Tunisia workshop was to clarify roles and set expectations for the Fellows’ relationships with their mentors. Awla mentors, nearly all of whom joined their mentees in Tunisia, ranged from laboratory directors, lead professors, and government officials.  A 2-day mentoring orientation helped to establish the semi-structured mentoring relationship, whereby mentors will share their knowledge, skills and experience with the Fellows to help their development during the course of the Awla program and beyond.

Coursework
The Awla Fellowship consists of a series of online courses ranging from project planning to science writing, research methods and data management. Awla administrators ensured each Fellow had full access to the customized set of courses.  Senior Fellows who complete the Awla program will have access to more than 3000 other courses across domains.

Support
Throughout the program, Awla administrators will continue to support the Fellows both virtually, by following up their on-line courses and capstone projects and seeking funding for conference participation, and in person during an upcoming workshop in Tunis from October 28 to November 4, 2019.  A final closing workshop, hosted by the International Center for Biosaline Agriculture in the United Arab Emirates, will take place in February 2020.  The Awla funders will then plan another cycle of the program, with a new cohort of Fellows.

The MENA region faces critical and urgent agricultural challenges related to improved food security and nutrition, a better research and development landscape, and economic and social benefits of a narrowed gender gap that will require both innovative and inclusive solutions.  With this strong foundation, the Awla Fellows are poised to become leaders that can take on these challenges.

###

The Arab Women Leaders in Agriculture fellowship is hosted by the International Center for Biosaline Agriculture (ICBA) and funded by the Bill & Melinda Gates Foundation, The Islamic Development Bank (IsDB) Group and the CGIAR Research Program on Wheat

Why cereals matter: the cereals imperative of future food systems

The world urgently needs a transformation of the global food system, leading to healthier diets for all and a drastic reduction in agriculture’s environmental impact. The major cereal grains must play a central role in this new revolution for the benefit of the world’s poorest people.

This op-ed piece by Martin Kropff and Matthew Morell was originally posted on CIMMYT.org

Pioneering research on our three most important cereal grains — maize, rice, and wheat — has contributed enormously to global food security over the last half century, chiefly by boosting the yields of these crops and by making them more resilient in the face of drought, flood, pests and diseases. But with more than 800 million people still living in chronic hunger and many more suffering from inadequate diets, much remains to be done. The challenges are complicated by climate change, rampant degradation of the ecosystems that sustain food production, rapid population growth and unequal access to resources that are vital for improved livelihoods.

In recent years, a consensus has emerged among agricultural researchers and development experts around the need to transform global food systems, so they can provide healthy diets while drastically reducing negative environmental impacts. Certainly, this is a central aim of CGIAR — the world’s largest global agricultural research network — which views enhanced nutrition and sustainability as essential for achieving the Sustainable Development Goals. CGIAR scientists and their many partners contribute by developing technological and social innovations for the world’s key crop production systems, with a sharp focus on reducing hunger and poverty in low- and middle-income countries of Africa, Asia and Latin America.

The importance of transforming food systems is also the message of the influential EAT-Lancet Commission report, launched in early 2019. Based on the views of 37 leading experts from diverse research disciplines, the report defines specific actions to achieve a “planetary health diet,” which enhances human nutrition and keeps the resource use of food systems within planetary boundaries. While including all food groups — grains, roots and tubers, pulses, vegetables, fruits, tree nuts, meat, fish, and dairy products — this diet reflects important shifts in their consumption. The major cereals, for example, would supply about one-third of the required calories but with increased emphasis on whole grains to curb the negative health effects of cheap and abundant supplies of refined cereals.

This proportion of calories corresponds roughly to the proportion of its funding that CGIAR currently invests in the major cereals. These crops are already vital in diets, cultures, and economies across the developing world, and the way they are produced, processed and consumed must be a central focus of global efforts to transform food systems. There are four main reasons for this imperative.

Aneli Zárate Vásquez (left), in Mexico's state of Oaxaca, sells maize tortillas for a living. (Photo: P. Lowe/CIMMYT)
Aneli Zárate Vásquez (left), in Mexico’s state of Oaxaca, sells maize tortillas for a living. (Photo: P. Lowe/CIMMYT)

1. Scale and economic importance

The sheer extent of major cereal production and its enormous value, especially for the poor, account in large part for the critical importance of these crops in global food systems. According to 2017 figures, maize is grown on 197 million hectares and rice on more than 167 million hectares, mainly in Asia and Africa. Wheat covers 218 million hectares, an area larger than France, Germany, Italy, Spain and the UK combined. The total annual harvest of these crops amounts to about 2.5 billion tons of grain.

Worldwide production had an estimated annual value averaging more than $500 billion in 2014-2016. The prices of the major cereals are especially important for poor consumers. In recent years, the rising cost of bread in North Africa and tortillas in Mexico, as well as the rice price crisis in Southeast Asia, imposed great hardship on urban populations in particular, triggering major demonstrations and social unrest. To avoid such troubles by reducing dependence on cereal imports, many countries in Africa, Asia and Latin America have made staple crop self-sufficiency a central element of national agriculture policy.

Women make roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at their home in the Dinajpur district, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
Women make roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at their home in the Dinajpur district, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

2. Critical role in human diets

Cereals have a significant role to play in food system transformation because of their vital importance in human diets. In developing countries, maize, rice, and wheat together provide 48% of the total calories and 42% of the total protein. In every developing region except Latin America, cereals provide people with more protein than meat, fish, milk and eggs combined, making them an important protein source for over half the world’s population.

Yellow maize, a key source of livestock feed, also contributes indirectly to more protein-rich diets, as does animal fodder derived from cereal crop residues. As consumption of meat, fish and dairy products continues to expand in the developing world, demand for cereals for food and feed must rise, increasing the pressure to optimize cereal production.

In addition to supplying starch and protein, the cereals serve as a rich source of dietary fiber and nutrients. CGIAR research has documented the important contribution of wheat to healthy diets, linking the crop to reduced risk of type 2 diabetes, cardiovascular disease, and colorectal cancer. The nutritional value of brown rice compared to white rice is also well known. Moreover, the recent discovery of certain genetic traits in milled rice has created the opportunity to breed varieties that show a low glycemic index without compromising grain quality.

Golden Rice grain (left) compared to white rice grain. Golden Rice is unique because it contains beta carotene, giving it a golden color. (Photo: IRRI)
Golden Rice grain (left) compared to white rice grain. Golden Rice is unique because it contains beta carotene, giving it a golden color. (Photo: IRRI)

3. Encouraging progress toward better nutritional quality

The major cereals have undergone further improvement in nutritional quality during recent years through a crop breeding approach called “biofortification,” which boosts the content of essential vitamins or micronutrients. Dietary deficiencies of this kind harm children’s physical and cognitive development, and leave them more vulnerable to disease. Sometimes called “hidden hunger,” this condition is believed to cause about one-third of the 3.1 million annual child deaths attributed to malnutrition. Diverse diets are the preferred remedy, but the world’s poorest consumers often cannot afford more nutritious foods. The problem is especially acute for women and adolescent girls, who have unequal access to food, healthcare and resources.

It will take many years of focused effort before diverse diets become a reality in the lives of the people who need them most. Diversified farming systems such as rice-fish rotations that improve nutritional value, livelihoods and resilience are a step in that direction. In the meantime, “biofortified” cereal and other crop varieties developed by CGIAR help address hidden hunger by providing higher levels of zinc, iron and provitamin A carotenoids as well as better protein quality. Farmers in many developing countries are already growing these varieties.

A 2018 study in India found that young children who ate zinc-biofortified wheat in flatbread or porridge became ill less frequently. Other studies have shown that consumption of provitamin A maize improves the body’s total stores of this vitamin as effectively as vitamin supplementation. Biofortified crop varieties are not a substitute for food fortification (adding micronutrients and vitamins during industrial food processing). But these varieties can offer an immediate solution to hidden hunger for the many subsistence farmers and other rural consumers who depend on locally produced foods and lack access to fortified products.

Ruth Andrea (left) and Maliamu Joni harvest cobs of drought-tolerant maize in Idakumbi, Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)
Ruth Andrea (left) and Maliamu Joni harvest cobs of drought-tolerant maize in Idakumbi, Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)

4. Wide scope for more sustainable production

Cereal crops show much potential not only for enhancing human heath but that of the environment as well. Compared to other crops, the production of cereals has relatively low environmental impact, as noted in the EAT-Lancet report. Still, it is both necessary and feasible to further enhance the sustainability of cereal cropping systems. Many new practices have a proven ability to conserve water as well as soil and land, and to use purchased inputs (pesticides and fertilizers) far more efficiently. With innovations already available, the amount of water used in current rice cultivation techniques, for example, can be significantly reduced from its present high level.

Irrigation scheduling, laser land leveling, drip irrigation, conservation tillage, precision nitrogen fertilization, and cereal varieties tolerant to drought, flooding and heat are among the most promising options. In northwest India, scientists recently determined that optimal practices can reduce water use by 40%, while maintaining yields in rice-wheat rotations. There and in many other places, the adoption of new practices to improve cereal production in the wet season not only leads to more efficient resource use but also creates opportunities to diversify crop production in the dry season. Improvements to increase cereal crop yields also reduces their environmental footprint; using less land, enhancing carbon sequestration and biodiversity and, for rice, reducing methane emissions per kilo of rice produced. Given the enormous extent of cereals cultivation, any improvement in resource use efficiency will have major impact, while also freeing up vast amounts of land for other crops or natural vegetation.

A major challenge now is to improve access to the knowledge and inputs that will enable millions of farmers to adopt new techniques, making it possible both to diversify production and grow more with less. Another key requirement consists of clear signals from policymakers, especially where land and water are limited, about the priority use of these resources — for example, irrigating low-value cereals to bolster food security versus applying the water to higher value crops and importing staple cereals.

Morning dew on a wheat spike. (Photo: Vadim Ganeyev/CIMMYT)
Morning dew on a wheat spike. (Photo: Vadim Ganeyev/CIMMYT)

Toward a sustainable dietary revolution

Future-proofing the global food system requires bold steps. Policy and research need to support a double transformation, centered on nutrition and sustainability.

CGIAR works toward nutritional transformation of our food system through numerous global partnerships. We give high priority to improving cereal crop systems and food products, because of their crucial importance for a growing world population. Recognizing that this alone will not suffice for healthy diets, we also strongly promote greater dietary diversity through our research on various staple crops and production systems and by raising public awareness of more balanced and nutritious diets.

To help achieve a sustainability transformation, CGIAR researchers and partners have developed a wide array of techniques that use resources more efficiently, enhance the resilience of food production in the face of climate change and reduce greenhouse gas emissions, while achieving sustainable increases in crop yields. At the same time, we are generating new evidence on which techniques work best under what conditions to target the implementation of these solutions more effectively.

The ultimate impact of our work depends crucially on the growing resolve of developing countries to promote better diets and more sustainable food production through strong policies and programs. CGIAR is well prepared to help strengthen these measures through research for development, and we are confident that our work on cereals, with continued donor support, will have high relevance, generating a wealth of innovations that help drive the transformation of global food systems.

Martin Kropff is the Director General of the International Maize and Wheat Improvement Center (CIMMYT).

Matthew Morell is the Director General of the International Rice Research Institute (IRRI).