CIMMYT scientists join fellow experts in San Diego for world’s largest plant and animal genomics conference

CIMMYT Principal Scientist Sarah Hearne presenting at this week’s PAG conference. Photo: CIMMYT

A number of scientists from the International Maize and Wheat Improvement Center (CIMMYT) presented this week at the International Plant and Animal Genome Conference (PAG) in San Diego, USA.

PAG is the largest agricultural genomics meeting in the world, bringing together over 3,000 leading genetic scientists and researchers from around the world to present their research and share the latest developments in plant and animal genome projects. It provides an important opportunity for CIMMYT scientists to highlight their work translating the latest molecular research developments into wheat and maize breeding solutions for better varieties. 

To meet global food demand by 2050, agricultural production must increase by 60% – while at the same time minimizing harm to the environment. This is the process of sustainable intensification, recommended by world organizations like the United Nations and the EAT Lancet Commission as a key strategy for transforming our struggling global food system.

Genomics is crucial to sustainable intensification. By studying a plant or animal’s genetic architecture, researchers can better understand what drives crop or livestock productivity, quality, climate-resilience and resistance to pests and diseases. With this information scientists can speed up efforts to develop better varieties and stay ahead of climate- and disease- related threats.

  • Wheat Scientist Philomin Juliana shared her findings on successfully identifying significant new chromosomal regions for wheat yield and disease resistance using the full wheat genome map. Philomin and her colleagues have created a freely-available collection of genetic information and markers for more than 40,000 wheat lines which will accelerate efforts to breed superior wheat varieties. She also discussed the value of genomic and high-throughput phenotyping tools for current breeding strategies adopted by CIMMYT to develop climate resilient wheat.  
Philomin Juliana at this weeks PAG conference. Photo: CIMMYT
  • Principal Scientist Sarah Hearne presented the CIMMYT-led Excellence in Breeding (EiB) platform’s plans to transform breeding through a new enterprise breeding system which is designed to help breeding institutions manage big data and breeding workflows at a low cost. She also discussed the smarter use of genebank exploration to identify high value variation in elite breeding materials. Genebanks are a vital source of genetic information and biodiversity which can accelerate the development of better, more resilient crops.
Sarah Hearne presents on smart use of genebanks to accelerate the development of better wheat and maize varieties. Photo: Francisco Gomez
  • Distinguished Scientist Jose Crossa discussed the latest models and methods for combining phenomic and genomic information to accelerate the development of climate-resilient crop varieties. He highlighted the use of the Artificial Neural Network — a model inspired by the human brain — to model the relationship between input signals and output signals in crops. He also discussed a phenotypic and genomic selection index which can improve response to selection and expected genetic gains for all of an individual plant’s genetic traits simultaneously.
CIMMYT Distinguished Scientist Jose Crossa presenting at this week’s PAG conference. Photo: Sarah Hearne/CIMMYT
  • Genomic Breeder Umesh Rosyara presented at a workshop on the genomic data management and marker application tool Galaxy. The software, developed by the Excellence in Breeding (EiB) platform, integrates a suite of bioinformatics analysis tools, R-packages – a free software environment for statistical computing and graphics –  and visualization tools to manage routine genomic selection (GS) and genome wide association studies (GWAS) analysis. This allows crop breeders and genomic scientists without a programming background to conduct these analyses and create crop-specific workflows.

“PAG is currently the main international meeting touching both crop and livestock genomics, so it’s an invaluable chance to connect and share insights with research and breeding colleagues around the world,” said Hearne. 

“It’s also an important forum to highlight how we are linking upstream and field, and help others do the same.”

New international partnership to identify and develop resistance to dangerous wheat disease

China-based CIMMYT-JAAS screening station aims for global impact in the fight against deadly Fusarium head blight

Photo: JAAS

The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agriculture in the Dry Areas (ICARDA), have announced a partnership with the Jiangsu Academy of Agricultural Sciences (JAAS) in China to open a new screening facility for the deadly and fast-spreading fungal wheat disease Fusarium head blight (FHB).

The new facility, based near JAAS headquarters in Nanjing, aims to capitalize on CIMMYT’s world-class collection of disease-resistant wheat materials and the diversity of the more than 150,000 wheat germplasm in its Wheat Germplasm Bank to identify and characterize genetics of sources of resistance to FHB and, ultimately, develop new, FHB-resistant wheat varieties that can be sown in vulnerable areas around the world.

“The participation of JAAS in the global FHB breeding network will significantly contribute to the development of elite germplasm with good FHB resistance,” said Pawan Singh, head of wheat pathology for CIMMYT.

“We expect that in 5 to 7 years, promising lines with FHB resistance will be available for deployment by both CIMMYT and China to vulnerable farmers, thanks to this new station.”

Fusariumhead blight is one of the most dangerous wheat diseases.  It can cause up to 50% yield loss, and produce severe mycotoxin contamination in food and feed – with impacts including increased health care and veterinary care costs, and reduced livestock production. 

Even consuming low to moderate amounts of Fusarium mycotoxins may impair intestinal health, immune function and/or fitness. Deoxynivalenol (DON), a mycotoxin the fungus inducing FHB produces, has been linked to symptoms including nausea, vomiting, and diarrhea. In livestock, Fusarium mycotoxin consumption exacerbates infections with parasites, bacteria and viruses  — such as occidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry and swine respiratory disease.

In China, the world’s largest wheat producer, FHB is the most important biotic constraint to production.

The disease is extending quickly beyond its traditionally vulnerable wheat growing areas in East Asia, North America, the southern cone of South America, Europe and South Africa —  partly as a result of global warming, and partly due to otherwise beneficial, soil-conserving farming practices such as wheat-maize rotation and reduced tillage.

“Through CIMMYT’s connections with national agricultural research systems in developing countries, we can create a global impact for JAAS research, reaching the countries that are expected to be affected the expansion of FHB epidemic area,” said Xu Zhang, head of Triticeae crops research group at the Institute of Food Crops of the Jiangsu Academy of Agricultural Sciences.

The new collaborative effort will target FHB research initially but could potentially expand to research on other wheat diseases as well. Wheat blast, for example, is a devastating disease that spread from South America to Bangladesh in 2016. Considering the geographical closeness of Bangladesh and China, a collaboration with CIMMYT, as one of the leading institutes working on wheat blast, could have a strong impact.

Although the platform is new, the two institutions have a longstanding relationship.  The bilateral collaboration between JAAS and CIMMYT began in early 1980s with a shuttle breeding program between China and Mexico to speed up breeding for FHB resistance. The two institutions also conducted extensive germplasm exchanges in the 1980s and 1990s, which helped CIMMYT improve resistance to FHB, and helped JAAS improve wheat rust resistance.

Currently, JAAS and CIMMYT are working on FHB under a project funded by the National Natural Science Foundation China called “Elite and Durable Resistance to Wheat Fusarium Head Blight” that aims to deploy FHB resistance genes/QTL in Chinese and CIMMYT germplasm and for use in wheat breeding.

INTERVIEW OPPORTUNITIES:

Xinyao He, Wheat Pathologist and Geneticist, Global Wheat Program, CIMMYT. x.he@cgiar.org, +52 (55) 5804 2004 ext. 2218

FOR MORE INFORMATION, CONTACT THE MEDIA TEAM:

Geneviève Renard, Head of Communications, CIMMYT. g.renard@cgiar.org, +52 (55) 5804 2004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

ABOUT CGIAR RESEARCH PROGRAM ON WHEAT:
The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

ABOUT CIMMYT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit www.cimmyt.org.

ABOUT Jiangsu Academy of Agricultural Sciences (JAAS):

Jiangsu Academy of Agricultural Sciences (JAAS), a comprehensive agricultural research institution since 1931, strives to make agriculture more productive and sustainable through technology innovation. JAAS endeavors to carry out the Plan for Rural Vitalization Strategy and our innovation serves agriculture, farmers and the rural areas. JAAS provide more than 80% of new varieties, products and techniques in Jiangsu Province, teach farmers not only to increase yield and quality, but also to challenge conventional practices in pursuit of original ideas in agro-environment protection. For more information, visit home.jaas.ac.cn/.

This research is supported by CGIAR Fund Donors.

Happy New Year from the CGIAR Research Program on Wheat!

2019 was an eventful year for wheat. Scientists from the CGIAR Research Program on Wheat (WHEAT) and our global partners made groundbreaking progress for the more than 2 billion people who depend on wheat for their livelihoods and daily food.

Here are a few of the accomplishments we look back on in 2019.

WHEAT scientists joined more than 900 colleagues worldwide at the first International Wheat Congress, held in Saskatoon, Canada in July. They shared cutting edge findings to improve yield, nutrition, and climate change resilience, including state-of-the-art approaches to accelerate breeding for heat and drought tolerance, new sources of diversity for pest resistance, the link between nighttime temperatures and yield loss, and much more.

Safeguarding the biodiversity of wheat is crucial for developing new, resilient wheat varieties. We made exciting progress on finding and saving “lost” landraces

With our partners, we developed innovative digital tools to track the spread of improved varieties through DNA fingerprinting and to detect devastating rust disease from the field in nearly real-time with MARPLE diagnostics.

Our scientists also worked on identifying climate-friendly and cost-effective farming practices that can increase Indian farmers’ profits and cut pollution in the Indo-Gangetic plains.

As we enter 2020, we are inspired by evidence that research building on the recent breakthroughs in mapping the wheat genome will improve the yield, climate-resilience, and quality of bread wheat. 

This would not be possible without your support. Thank you!  We look forward to continuing our collaboration on wheat research that improves livelihoods.

Best regards for the new year and please stay in touch! Check out our 
blog, follow us on Facebook, and subscribe to our quarterly newsletter, The WHEAT Wire.      

Supercharged MARPLE labs to be fastest rust surveillance system in Africa

This article was originally posted on the Alliance for Accelerated Crop Improvement in Africa (ACACIA) website.

A network of Ethiopian researchers across the country are championing a new mobile lab to provide near real-time, strain-level diagnostics during wheat rust outbreaks.

Since winning the international impact category of the BBSRC innovator of the year award the MARPLE (Mobile And Real-time PLant disEase) diagnostic platform is now being established in research hubs across the wheat growing areas of Ethiopia. This marks the next step for the platform after its first trial in country just over a year ago. The UK-Ethiopian partnership hopes to have these platforms fully operational in time for the next growing season in 2020.

“Wheat yellow rust continues to cause huge losses for Ethiopian farmers,” says Diane Saunders whose lab led the creation of MARPLE diagnostics, “finally we have a proven mobile pipeline that gives us information on precisely which strain is present in a farmer’s field in near real-time. This provides the time needed to plan informed defensive responses. Our goal is now to put this technology in the hands of the researcher hubs on the ground.”

Read the full article here.

What is wheat blast?

This article by Matthew O’ Leary was originally posted on the CIMMYT website.

Wheat blast is a fast-acting and devastating fungal disease that threatens food safety and security in tropical areas in South America and South Asia. Directly striking the wheat ear, wheat blast can shrivel and deform the grain in less than a week from the first symptoms, leaving farmers no time to act.

The disease, caused by the fungus Magnaporthe oryzae pathotype triticum (MoT), can spread through infected seeds and survives on crop residues, as well as by spores that can travel long distances in the air.

Magnaporthe oryzae can infect many grasses, including barley, lolium, rice, and wheat, but specific isolates of this pathogen generally infect limited species; that is, wheat isolates infect preferably wheat plants but can use several more cereal and grass species as alternate hosts. The Bangladesh wheat blast isolate is being studied to determine its host range. The Magnaporthe oryzae genome is well-studied but major gaps remain in knowledge about its epidemiology.

The pathogen can infect all aerial wheat plant parts, but maximum damage is done when it infects the wheat ear. It can shrivel and deform the grain in less than a week from first symptoms, leaving farmers no time to act.
The pathogen can infect all aerial wheat plant parts, but maximum damage is done when it infects the wheat ear. It can shrivel and deform the grain in less than a week from first symptoms, leaving farmers no time to act.

Where is wheat blast found?

First officially identified in Brazil in 1985, the disease is widespread in South American wheat fields, affecting as much as 3 million hectares in the early 1990s. It continues to seriously threaten the potential for wheat cropping in the region.

In 2016, wheat blast spread to Bangladesh, which suffered a severe outbreak. It has impacted around 15,000 hectares of land in eight districts, reducing yield on average by as much as 51% in the affected fields.

Wheat-producing countries and presence of wheat blast.
Wheat-producing countries and presence of wheat blast.

How does blast infect a wheat crop?

Wheat blast spreads through infected seeds, crop residues as well as by spores that can travel long distances in the air.

Blast appears sporadically on wheat and grows well on numerous other plants and crops, so rotations do not control it. The irregular frequency of outbreaks also makes it hard to understand or predict the precise conditions for disease development, or to methodically select resistant wheat lines.

At present blast requires concurrent heat and humidity to develop and is confined to areas with those conditions. However, crop fungi are known to mutate and adapt to new conditions, which should be considered in management efforts.

How can farmers prevent and manage wheat blast?

There are no widely available resistant varieties, and fungicides are expensive and provide only a partial defense. They are also often hard to obtain or use in the regions where blast occurs, and must be applied well before any symptoms appear — a prohibitive expense for many farmers.

The Magnaporthe oryzae fungus is physiologically and genetically complex, so even after more than three decades, scientists do not fully understand how it interacts with wheat or which genes in wheat confer durable resistance.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) are partnering with national researchers and meteorological agencies on ways to work towards solutions to mitigate the threat of wheat blast and increase the resilience of smallholder farmers in the region. Through the USAID-supported Cereal Systems Initiative for South Asia (CSISA) and Climate Services for Resilient Development (CSRD) projects, CIMMYT and its partners are developing agronomic methods and early warning systems so farmers can prepare for and reduce the impact of wheat blast.

Visiting scientist overcomes challenges to bring state of the art crop analysis to CIMMYT

Ajit Nehe with research assistant Ibrahim Ozturk, taking RGB images at early stage of wheat growth. Photo: CIMMYT

Visiting scientist and wheat physiology breeder Ajit Nehe recently completed a one and half year tenure at the International Maize and Wheat Improvement Center (CIMMYT).

A native of India, Nehe joined CIMMYT as a visiting scientist in wheat physiology under the International Winter Wheat Improvement Program (IWWIP) based in Ankara, Turkey in August 2018. Under the supervision of IWWIP Head Alex Morgunov, Nehe, who has a PhD in wheat physiology, has been working on understanding drought tolerance in winter wheat and developing climate resilient varieties.

Growing up in a small village in the Maharashtra state of India, Nehe and his family depended on agriculture for their livelihoods. From a young age, Nehe noticed the unpredictability of the environment and agriculture, and became interested in the relationship between the environment and agriculture and the effect of agriculture on the soil. This childhood interest inspired him to study agricultural science.

Taking the academic path was not an easy one for Nehe, who faced his own personal challenges.

“Having dyslexia — not being able to read and write properly — and not knowing that I was dyslexic until I started my PhD in the UK, my life was never easy. But having the dyslexic advantage of logical and scientific thinking I always found the way during my difficult academic and professional life,” said Nehe. 

He hopes that his story will encourage other budding researchers who might face similar challenges. “I would like to inspire the young researchers who want to develop their careers despite their difficulties.”

At CIMMYT, Nehe has been working on experiments to study nitrogen use efficiency and grain quality in spring wheat at three research institutes in Turkey:  Adana, Adapazari, and Izmir. After a successful first year, Nehe’s colleagues will repeat the experiments next year, with his input, with a view to publishing their results in a high impact research paper.

He has also contributed to the development of a root phenotyping platform using shovelomic techniques – which involves excavating roots by shovel, washing the roots, taking images of the root system and using image analysis software to get data on root traits.

“Under this project, we have successfully identified the different root traits associated with yield improvement under drought conditions. We also found root traits that were associated with previously detected genetic markers for drought tolerance by doing a marker-traits association study,” explained Nehe.

Using high tech imagery to understand crop physiology 

Nehe trains researchers on the use of RGB cameras for crop analysis. Photo: CIMMYT

Nehe has trained numerous researchers from Turkish agricultural research institutes such as the Aegean Agricultural Research Institute, the Bahri Dagdas Winter Cereal International Research Institute and Transitional Zone Agricultural Research Institute — who are involved in collaborative research with CIMMYT – on new, low-cost, simple measurements of field phenotyping techniques for wheat physiological traits.

Most recently, he trained researchers on the use of RBG cameras and software for image analysis, drone image segmentation, and data extraction and analysis at a series of workshops held over the past year and a half at CIMMYT’s Izmir and Ankara offices in Turkey.


Nehe testing an RBG camera and remote control mobile app at an experimental plot at Bahri Dagdas International Agricultural Research Institute, Konya, Turkey. Photo: CIMMYT

“The University of Barcelona has developed expertise on this technique, which involves taking images of wheat plots from above using a remote control provided by a mobile app, and extracting data from this images using image analysis software,” explained Nehe.

The technique has shown promising results for throughput field phenotyping, which involves characterizing a plant’s physical and biological properties.

Despite leaving CIMMYT in October, Nehe hopes to continue collaborating with CIMMYT in the future. His current plans involve bridging the gap between international research institutes and local grassroots NGOs to solve the problems of smallholder farmers in rural India. He is planning to establish a project in collaboration with the Paani Foundation, a local NGO and international knowledge partners like the Borlaug Institute for South Asia (BISA) on the area of sweet sorghum biofuel production technology. The project will combine bio-economic modelling and GIS techniques to help in crop management.

The end of an era: Alexey Morgunov retires after a 28-year career

This story written by Alison Doody was originally posted on the CIMMYT website.

At the end of 2019, the International Maize and Wheat Improvement Center (CIMMYT) will say goodbye to Alexey Morgunov, head of the International Winter Wheat Improvement Program (IWWIP) in Turkey.

A native of Russia, Morgunov joined CIMMYT as a spring wheat breeder in 1991 working with Sanjaya Rajaram, former Global Wheat Program director and World Food Prize laureate. Morgunov went on to work as a breeder of winter wheat in Turkey in 1994 and later to Kazakhstan, where he helped generate new wheat varieties and technologies for Central Asia and the Caucasus region.

Since 2006 he has led the International Winter Wheat Improvement Program (IWWIP), a highly-productive collaboration between Turkey, the International Center for Research in Dry Areas (ICARDA), and CIMMYT.

As part of that program, Morgunov contributed to the development of more than 70 widely grown wheat varieties in Central and West Asia and, in 2013, to a national wheat landrace inventory in Turkey. He has also helped develop and characterize synthetic wheats — created by crossing modern durum wheat with grassy relatives of the crop — and used them in breeding to broaden the diversity of winter wheat.

Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)
Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)

A professional journey across Central Asia

Morgunov said his childhood in rural Russia instilled in him the importance of agriculture and of education.

“My parents, who lived in rural Russia, went through hunger and were trying to make sure that their children worked somewhere close to food production so that we wouldn’t go hungry,” he explained. “They said: ‘OK, Alex, you go to an agricultural university and you will not be hungry.’ ”

After his university studies, Morgunov joined the Plant Breeding Institute at Cambridge as a visiting scientist in the late 1980s, where he crossed paths with CIMMYT scientists seeking to partner with the newly independent states of the former Soviet Union. After an interview in 1991, he was invited to join the CIMMYT team in Mexico as a wheat breeder.

He was later posted to Kazakhstan to build relationships in Central Asia, a period he cites as a standout. “In the late 90s CIMMYT started working with Central Asian countries experiencing severe food security issues,” he said. “They didn’t really have any technologies or varieties for grain production, so we started a program in 95/96 which later developed into a CGIAR program.”

“We had great impact in those countries at the time, introducing zero tillage in Kazakhstan, new seed varieties in Tajikistan after the civil war, and high-yielding rust-resistant varieties to Uzbekistan.”

Reflecting on his time at CIMMYT, it was the friends and connections he made that stood out the most for Morgunov.

“The thing I most enjoyed was communicating with colleagues,” Morgunov said. “You start working in Kazakhstan and other places and building up cooperation and technical relationships and, over time, these relationships become friendships that we enjoy for as long as we live. I think this is very satisfactory for us as human beings.”

Last month, Morgunov received a fellowship from the Crop Science Society of America. The award is the highest recognition granted by the association.

Active retirement

One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)
One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)

Despite his plans to retire, Morgunov still plans to continue working — but on his own terms. “My wife is from Kazakhstan so we will be moving there and I plan to continue working in a different capacity and different schedule,” he explains. “Some Russian universities are writing to me to participate in projects and also universities from Kazakhstan. I have a couple of PhD students in Kazakhstan so I’d like to move more into the educational side of things, working with younger people.”

He was also given an Adjunct Faculty position by Washington State University early this year and will volunteer for them.

Morgunov has also recommended that CIMMYT creates an “emeritus” status for long-serving colleagues retiring from the organization, so they can continue to support the organization.

It won’t be all work though. Morgunov is a devoted tennis player and plans to improve his backhand. A keen sailor, he also hopes to spend more time on the waves and visiting new countries.

Video: Heat and Drought Wheat Improvement Consortium

This week, the world’s eyes are upon global leaders gathered in Madrid for COP25 to negotiate collective action to slow the devastating impacts of climate change.

According to the UN, the world is heading for a 3.2 degrees Celsius global temperature rise over pre-industrial levels, leading to a host of destructive climate impacts including hotter and drier environments and more extreme weather events. Under these more extreme conditions, the world’s staple food crops are under threat.

A new video highlights the work of the Heat and Drought Wheat Improvement Network (HeDWIC), a global research and capacity building network under the Wheat Initiative, that harnesses the latest technologies in crop physiology, genetics and breeding to help create new climate-resilient wheat varieties. With the help of collaborators and supporters from around the world,  HeDWIC takes wheat research from the theoretical to the practical by incorporating the best science into real-life breeding scenarios.

7th International Cereal Nematodes Symposium at New Delhi, India to combat nematode problems in cereal crops

Uma Rao, Tushar K. Dutta, Vishal S. Somvanshi and Abdelfattah A. Dababat contributed to this story.

Participants of the 7th International Cereal Nematodes Symposium at New Delhi, India, November 3-6, 2019

Fifty delegates from across the globe recently gathered at the 7th International Cereal Nematode Symposium in New Delhi, India to discuss the spread of cereal nematodes, strategies to lessen their impact on crops and ways to boost international collaboration on research.

Nematodes, microscopic plant parasites that include the Heterodera species of cereal cyst nematode and the Pratylenchus species of root lesion nematodes, are widespread in wheat production systems throughout West Asia, North Africa, parts of Central Asia, northern India, and China, and pose a grave economic problem for wheat production systems globally.

The International Maize and Wheat Improvement Center (CIMMYT) and the Turkish Ministry of Agriculture and Forestry have been working over the last 12 years —  in collaboration with the International Center for Agriculture in the Dry Areas (ICARDA), national program partners, and research institutions in Australia and Europe – to understand the importance and distribution of these species of cereal nematodes, as part of the ICARDA-CIMMYT Wheat Improvement Program (ICWIP).  

“Because cereals are the staple food for the majority of the world’s population, cereal nematodes pose an enormous threat to global food security,” said Abdelfattah Dababat, leader of CIMMYT’s Soil Borne Pathogens Program.

“The symposium allows scientists from around the world to share their findings, lessons and strategies to combat this threat.”

The symposium, organized by ICWIP and hosted by the Division of Nematology at the ICAR- Indian Agricultural Research Institute (IARI), was held November 3-6 at New Delhi’s National Agricultural Science Complex. The conference was inaugurated by Dr. Trilochan Mohapatra, Director General of ICAR & Secretary DARE, Government of India. It included sessions on the global status and distribution of cereal nematodes, their economic importance and population dynamics, management strategies both with and without using host resistance, the genomes and parasitism genes of cereal nematodes, and the use of molecular tools for cereal nematode research.

Among the notable global developments shared, highlights included the following.

  • Scientists from Turkey, Syria, Iran and Israel described the distribution and management status of Heterodera spp. in their region.
  • Hendrika Fourie from South Africa’s North West University, and colleagues, discussed the nematode problems in South Africa.
  • Rebecca Zwart and Senior Research Scientist Grant Hollaway, from the University of Southern Queensland, Australia, presented findings on the Pratylenchus menace in wheat in Australia.
  • Uma Rao, a co-organizer of the symposium from IARI, and colleagues, discussed the deployment of molecular tools to manage the problem of the Meloidogyne graminicola nematode in rice-wheat cropping systems.   
  • Richard Sikora, from the University of Bonn, Germany, summarized the current challenges in nematology, especially pertaining to wheat and maize, and reiterated the need for new technologies and management approaches for the small- and medium-sized farms of the future. He also highlighted the role of remote sensing in detecting nematode diseases.
  • A.K. Singh, Joint Director of Research at IARI gave a formal presentation on molecular breeding of Basmati rice.

Trilochan Mohapatra, Director General of ICAR & Secretary Dare, and Arun K. Joshi from CIMMYT’s India office were among the other distinguished speakers. 

Following the symposium, participants observed nematode-related research work underway at IARI’s Division of Nematology, the largest nematology center in India. They also visited the IARI museum and the institute’s Division of Entomology.

Symposium supporters include CIMMYT, the CGIAR Research Program On Wheat, the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA), the Indian Agricultural Research Institute (IARI), the Republic of Turkey’s Ministry of Food, Agriculture and Livestock, Corteva, Syngenta, and the Plant Breeders Union of Turkey (BISAB). Previous symposiums have been held in Turkey, Austria, China and Morocco.

Release of the Abstract book during 7th International Cereal Nematodes Symposium at New Delhi, India, November 3-6, 2019

Many conditions, same yield: Durum wheat selected for zero tillage performs equally under conventional farming practices

Researchers demonstrate that CIMMYT’s durum wheat lines can be grown, bred, and selected under zero tillage or conventional tillage conditions without negatively affecting yield

CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot at the center’s headquarters at El Batán, Mexico. Crop residues, which are retained on the soil surface in CA, are visible in the foreground.
Photo credit: CIMMYT.

New research published in Field Crops Research by scientists at the International Maize and Wheat Improvement Center (CIMMYT) responds to the question of whether wheat varieties need to be adapted to zero tillage conditions.

With 33% of global soils already degraded, agricultural techniques like zero tillage – growing crops without disturbing the soil with activities like plowing – in combination with crop residue retention, are being considered to help protect soils and prevent further degradation. Research has shown that zero tillage with crop residue retention can reduce soil erosion and improve soil structure and water retention, leading to increased water use efficiency of the system. Zero tillage has also been shown to be the most environmentally friendly among different tillage techniques.

While CIMMYT promotes conservation agriculture, of which zero tillage is a component, many farmers who use CIMMYT wheat varieties still use some form of tillage. As farmers adopt conservation agriculture principles in their production systems, we need to be sure that the improved varieties breeders develop and release to farmers can perform equally well in zero tillage as in conventional tillage environments.

The aim of the study was to find out whether breeding wheat lines in a conservation agriculture environment had an effect on their adaptability to one tillage system or another, and whether separate breading streams would be required for each tillage system.

The scientists conducted parallel early generation selection in sixteen populations from the breeding program. The best plants were selected in parallel under conventional and zero-till conditions, until 234 and 250 fixed lines, were obtained.  They then grew all 484 wheat lines over the course of three seasons near Ciudad Obregon, Sonora, Mexico, under three different environments, — zero tillage, conventional tillage, and conventional tillage with reduced irrigation – and tested them for yield and growth traits. 

The authors found that yields were better under zero tillage than conventional tillage for all wheat lines, regardless of how they had been bred and selected, as this condition provided longer water availability between irrigations and mitigated inter-irrigation water stress. 

The main result was that selection environment, zero-till versus conventional till, did not produce lines with specific adaptation to either conditions, nor did it negatively impact the results of the breeding program for traits such as plant height, tolerance to lodging and earliness.

One trait which was slightly affected by selection under zero-till was early vigor – the speed at which crops grow during the earliest stage of growth. Early vigor is a useful adaptive trait in conservation agriculture because it allows the crop to cope with high crop residue loads – materials left on the ground such as leaves, stems and seed pods – and can improve yield through rapid development of maximum leaf area in dry environments. Results showed that varieties selected under zero tillage showed slightly increased early vigor which means that selection under zero tillage may drive a breeding program towards the generalization of this useful attribute.

The findings demonstrate that CIMMYT’s durum wheat lines, traditionally bred for wide-adaptation, can be grown, bred, and selected under either tillage conditions without negatively affecting yield performance. This is yet another clear demonstration that breeding for wide adaptation, a decades-long tradition within CIMMYT’s wheat improvement effort, is a suitable strategy to produce varieties that are competitive in a wide range of production systems. The findings represent a major result for wheat breeders at CIMMYT and beyond, with the authors concluding that it is not necessary to have separate breeding programs to address the varietal needs of either tillage systems.

This work was implemented by CIMMYT as part of the CGIAR Research Program on Wheat (WHEAT).

Read more results and recommendations in the study, “Durum wheat selection under zero tillage increases early vigor and is neutral to yield” in Field Crops Research, November 2019.

https://doi.org/10.1016/j.fcr.2019.107675