Assessing the effectiveness of a “wheat holiday” for preventing blast

Policy to encourage alternative crops for wheat farmers in South Asia a short-term solution at best, say CIMMYT researchers

The grain in this blast-blighted wheat head has been turned to chaff.
Photo: CKnight/ DGGW/ Cornell University

Wheat blast — one of the world’s most devastating wheat diseases — is moving swiftly into new territory in South Asia.

In an attempt to curb the spread of this disease, policymakers in the region are considering a “wheat holiday” policy: banning wheat cultivation for a few years in targeted areas. Since wheat blast’s Magnaporthe oryzae pathotype triticum (MoT) fungus can survive on seeds for up to 22 months, the idea is to replace wheat with other crops, temporarily, to cause the spores to die. In India, which shares a border of more than 4,000 km with Bangladesh, the West Bengal state government has already instituted a two-year ban on wheat cultivation in two districts, as well as all border areas. In Bangladesh, the government is implementing the policy indirectly by discouraging wheat cultivation in the severely blast affected districts.

CIMMYT researchers recently published in two ex-ante studies to identify economically feasible alternative crops in Bangladesh and the bordering Indian state of West Bengal.

Alternate crops

The first step to ensuring that a ban does not threaten the food security and livelihoods of smallholder farmers, the authors assert, is to supply farmers with economically feasible alternative crops.

In Bangladesh, the authors examined the economic feasibility of seven crops as an alternative to wheat, first in the entire country, then in 42 districts vulnerable to blast, and finally in ten districts affected by wheat blast. Considering the cost of production and revenue per hectare, the study ruled out boro rice, chickpeas and potatoes as feasible alternatives to wheat due to their negative net return. In contrast, they found that cultivation of maize, lentils, onions, and garlic could be profitable.

The study in India looked at ten crops grown under similar conditions as wheat in the state of West Bengal, examining the economic viability of each. The authors conclude that growing maize, lentils, legumes such aschickpeas and urad bean, rapeseed, mustard and potatoes in place of wheat appears to be profitable, although they warn that more rigorous research and data are needed to confirm and support this transition.

Selecting alternative crops is no easy task. Crops offered to farmers to replace wheat must be appropriate for the agroecological zone and should not require additional investments for irrigation, inputs or storage facilities. Also, the extra production of labor-intensive and export-oriented crops, such as maize in India and potatoes in Bangladesh, may add costs or require new markets for export.

There is also the added worry that the MoT fungus could survive on one of these alternative crops, thus completely negating any benefit of the “wheat holiday.” The authors point out that the fungus has been reported to survive on maize.

A short-term solution?

In both studies, the authors discourage a “wheat holiday” policy as a holistic solution. However, they leave room for governments to pursue it on an interim and short-term basis.

In the case of Bangladesh, the researchers assert that a “wheat holiday” would increase the country’s reliance on imports, especially in the face of rapidly increasing wheat demand and urbanization. A policy that results in complete dependence on wheat imports, they point out, may not be politically attractive or feasible. Also, the policy would be logistically challenging to implement. Finally, since the disease can potentially survive on other host plants, such as weeds and maize—it may not even work in the long run.

In the interim, the government of Bangladesh may still need to rely on the “wheat holiday” policy in the severely blast-affected districts. In these areas, they should encourage farmers to cultivate lentils, onions and garlic. In addition, in the short term, the government should make generic fungicides widely available at affordable prices and provide an early warning system as well as adequate information to help farmers effectively combat the disease and minimize its consequences.

In the case of West Bengal, India, similar implications apply – although the authors conclude that the “wheat holiday” policy could only work if Bangladesh has the same policy in its blast-affected border districts, which would involve potentially difficult and costly inter-country collaboration, coordination and logistics.

Actions for long-term success

The CIMMYT researchers urge the governments of India and Bangladesh, their counterparts in the region and international stakeholders to pursue long-term solutions, including developing a convenient diagnostic tool for wheat blast surveillance and a platform for open data and science to combat the fungus.

A promising development is the blast-resistant (and zinc-enriched) wheat variety BARI Gom 33 which the Bangladesh Agricultural Research Institute (BARI) released in 2017 with support from CIMMYT.However, it will take at least three to five years before it will be available to farmers throughout Bangladesh. The authors urged international donor agencies to speed up the multiplication process of this variety.

CIMMYT scientists in both studies close with an urgent plea for international financial and technical support for collaborative research on disease epidemiology and forecasting, and the development and dissemination of new wheat blast-tolerant and resistant varieties and complementary management practices – crucial steps to ensuring food security for more than a billion people in South Asia.

Read the full articles on Averting Wheat Blast by Implementing a ‘Wheat Holiday’: In Search of Alternative Crops in West Bengal, India and Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: In search of feasible crops in Bangladesh

Wheat Blast Impacts

First officially reported in Brazil in 1985, where it eventually spread to 3 million hectares in South America and became the primary reason for limited wheat production in the region, wheat blast moved to Bangladesh in 2016. There it affected nearly 15,000 hectares of land in eight districts, reducing yield by as much as 51 percent in the affected fields.

Blast is devilish: directly striking the wheat ear, it can shrivel and deform the grain in less than a week from the first symptoms, leaving farmers no time to act. There are no widely available resistant varieties, and fungicides are expensive and provide only a partial defense. The disease, caused by the fungus Magnaporthe oryzae pathotype triticum (MoT), can spread through infected seeds as well as by spores that can travel long distances in the air.

South Asia has a long tradition of wheat consumption, especially in northwest India and Pakistan, and demand has been increasing rapidly across South Asia. It is the second major staple in Bangladesh and India and the principal staple food in Pakistan. Research indicates 17 percent of wheat area in Bangladesh, India, and Pakistan — representing nearly 7 million hectares – is vulnerable to the disease, threatening the food security of more than a billion people.

CIMMYT and its partners work to mitigate wheat blast through projects supported by U.S. Agency for International Development (USAID), the Bill and Melinda Gates Foundation, the Australian Centre for International Agricultural Research (ACIAR), Indian Council for Agricultural Research (ICAR), the CGIAR Research Program on WHEAT, and the CGIAR Platform for Big Data in Agriculture.

Women’s equality crucial for Ethiopia’s agricultural productivity and wheat self-sufficiency goals

This op-ed by CIMMYT researchers Kristie Drucza and Mulunesh Tsegaye  was originally published in the Ethiopian newspaper The Reporter .

A farmer stacking harvested wheat Dodola district, Ethiopia. Photo: CIMMYT/P. Lowe

The Government of Ethiopia recently announced an ambitious goal to reach wheat self-sufficiency by 2022, eliminating expensive wheat imports and increasing food security.

However, a new report based on a four-year research project on gender and productivity in Ethiopia’s wheat sector indicates that a lack of technical gender research capacity, a shortage of gender researchers and low implementation of gender-focused policies is hampering these efforts.

Gender equality is crucial for agricultural productivity. Women head a quarter of rural households in Ethiopia. However, faced with low or no wages, limited access to credit and constrained access to land and other resources, they produce 23 percent less per hectare than men. Women in male-headed households have even more limitations, as gender norms often exclude them from community power structures, extension services and technical programs. According to the World Bank, a failure to recognize the roles, differences and inequities between men and women poses a serious threat to the effectiveness of Ethiopia’s agricultural development agenda.

The good news is the Government of Ethiopia has taken positive steps towards encouraging gender equality, with agriculture leading the way. Prime Minister Abiy Ahmed signaled his commitment to strengthening Ethiopia’s gender equality by appointing women to 50 percent of his cabinet and appointing the country’s first female president, defense minister and chief justice. The government’s Gender Equality Strategy for Ethiopia’s Agriculture Sector is a welcome improvement on past agriculture policies, and its latest Wheat Sector Development Strategy focuses on promoting women´s participation in extension and training programs. Under the leadership of Director General Mandefro Nigussie, the Ethiopian Institute of Agricultural Research (EIAR) has drafted a strategy for gender mainstreaming, developed gender guidelines and recruited 100 new female scientists, constituting the highest percentage of women researchers in its history.

However, according to our research, there is a clear gap between policies and actions. Women living in male-headed households face different constraints from those in female-headed households, yet very little data exists on them. Ethiopia’s wheat strategy and other policies do not have sex-disaggregated indicators and targets. Women are seen as a homogeneous category in policy, meaning that certain groups of women miss out on assistance.

To strengthen women’s role in the agriculture sector, more internal reflection on gender and learning is required across institutions and organizations. Our new report offers a full list of recommendations for the research, policy and donor communities. Among other suggestions, we recommend that:
• the research sector move beyond surveying household heads and use diverse research methods to understand systems within farming households;
• the education ministry develop a Gender in Agriculture specialization at a national university to make progress filling the existing gaps in expertise and that
• donors invest more in gender-related agriculture research.

Ethiopia has taken great strides towards recognizing the important role of women in agricultural productivity. If it wants to become self-sufficient in wheat—and meet the sustainable development goals (SDGs)—it must make the extra effort to follow through with these efforts. At this critical time, the country cannot afford to ignore women’s needs.

The “Understanding Gender in Wheat-based Livelihoods for Enhanced WHEAT R4D Impact” project ran from 2014 to 2018 and sought to improve the focus on gender and social equity in wheat-related research and development in Ethiopia, Pakistan and Afghanistan. In Ethiopia, the project included analysis of literature and gender policies, a stakeholder analysis of government and non-government actors, qualitative research with 275 male and female farmers and a gender audit and capacity assessment of EIAR. 

This research was made possible by the generous financial support of BMZ — the Federal Ministry for Economic Cooperation and Development, Germany. 

Smallholder wheat production can cut Africa’s costly grain imports

This blog by Mike Listman was originally posted on CIMMYT.org.

International scientists are working with regional and national partners in sub-Saharan Africa to catalyze local wheat farming and help meet the rapidly rising regional demand for this crop.

The specialists are focusing on smallholder farmers in Rwanda and Zambia, offering them technical and institutional support, better links to markets, and the sharing of successful practices across regions and borders, as part of the project “Enhancing smallholder wheat productivity through sustainable intensification of wheat-based farming systems in Rwanda and Zambia.”

“Work started in 2016 and has included varietal selection, seed multiplication, and sharing of high-yielding, locally adapted, disease-resistant wheat varieties,” said Moti Jaleta, a socioeconomist at the International Maize and Wheat Improvement Center (CIMMYT) who leads the project. “Our knowledge and successes in smallholder wheat production and marketing will also be applicable in Madagascar, Mozambique, and Tanzania.”

Harvesting wheat at Gataraga, Northern Province, Rwanda.

Maize is by far the number-one food crop in sub-Saharan Africa but wheat consumption is increasing fast, driven in part by rapid urbanization and life-style changes. The region annually imports more than 15 million tons of wheat grain, worth some US$ 3.6 billion at current prices. Only Ethiopia, Kenya, and South Africa grow significant amounts of wheat and they are still net importers of the grain.

“Growing more wheat where it makes sense to do so can help safeguard food security for people who prefer wheat and reduce dependence on risky wheat grain markets,” Jaleta explained. “We’re working in areas where there’s biophysical potential for the crop in rain-fed farming, to increase domestic wheat production and productivity through use of improved varieties and cropping practices.”

In addition to the above, participants are supporting the region’s wheat production in diverse ways:

  • Recommendations to fine-tune smallholder wheat value chains and better serve diverse farmers.
  • Testing of yield-enhancing farming practices, such as bed-and-furrow systems that facilitate efficient sowing and better weed control.
  • Testing and promotion of small-scale mechanization, such as power tillers, to save labor and improve sowing and crop establishment.
  • Exploring use of hand-held light sensors to precisely calibrate nitrogen fertilizer dosages throughout the cropping season.

Innocent Habarurema, wheat breeder in the Rwanda Agriculture and Animal Resources Development Board (RAB), cited recent successes in the release of improved, disease resistant wheat varieties, as well as engaging smallholder farmers in seed multiplication and marketing to improve their access to quality seed of those varieties.

“The main challenge in wheat production is the short window of time between wheat seasons, which doesn’t allow complete drying of harvested plants for proper threshing, Habarurema explained. “Suitable machinery to dry and thresh the wheat would remove the drudgery of hand threshing and improve the quality of the grain, so that it fetches better prices in markets.”

Millers, like this one in Rwanda, play a key role in wheat value chains.

Critical wheat diseases in Zambia include spot blotch, a leaf disease caused by the fungus Cochliobolus sativus, and head blight caused by Fusarium spp., which can leave carcinogenic toxins in the grain, according to Batiseba Tembo, wheat breeder at the Zambian Agricultural Research Institute (ZARI).

“Developing and disseminating varieties resistant to these diseases is a priority in the wheat breeding program at Mt. Makulu Agricultural Research Center,” said Tembo. “We’re also promoting appropriate mechanization for smallholder farmers, to improve wheat production and reduce the enormous drudgery of preparing the soil with hand hoes.”

Participants in the project, which runs to 2020, met at Musanze, in Rwanda’s Northern Province, during February 5-7 to review progress and plan remaining activities, which include more widespread sharing of seed, improved practices, and other useful outcomes.

“There was interest in trying smallholder winter wheat production under irrigation in Zambia to reduce the disease effects normally experienced in rainfed cropping,” said Jaleta, adding that the costs and benefits of irrigation, which is rarely used in the region, need to be assessed.

Project participants may also include in selection trials wheat varieties that have been bred to contain enhanced grain levels of zinc, a key micronutrient missing in the diets of many rural Africa households.

“The project will also push for the fast-track release and seed multiplication of the best varieties, to get them into farmers’ hands as quickly as possible,” Jaleta said.

In addition to CIMMYT, RAB, and ZARI, implementing partners include the Center for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA). Generous funding for the work comes from the International Fund for Agricultural Development (IFAD) and the CGIAR Research Program on Wheat.

New infographics illustrate impact of wheat blast

Wheat blast is a fast-acting and devastating fungal disease that threatens food safety and security in the Americas and South Asia.

First officially identified in Brazil in 1984, the disease is widespread in South American wheat fields, affecting as much as 3 million hectares in the early 1990s.

 In 2016, it crossed the Atlantic Ocean, and Bangladesh suffered a severe outbreak. Bangladesh released a blast-resistant wheat variety—developed with breeding lines from the International Maize and Wheat Improvement Center (CIMMYT)—in 2017, but the country and region remain extremely vulnerable.

The continued spread of blast in South Asia—where more than 100 million tons of wheat are consumed each year—could be devastating.

Researchers with the CIMMYT-led and USAID-supported Cereal Systems Initiative for South Asia (CSISA) and Climate Services for Resilient Development (CSRD) projects partner with national researchers and meteorological agencies on ways to work towards solutions to mitigate the threat of wheat blast and increase the resilience of smallholder farmers in the region. These include agronomic methods and early warning systems so farmers can prepare for and reduce the impact of wheat blast.

This series of infographics shows how wheat blast spreads, its potential effect on wheat production in South Asia and ways farmers can manage it.   

This work is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation). CSISA partners include CIMMYT, the International Food Policy Research Institute (IFPRI), and the International Rice Research Institute (IRRI).

CIMMYT and its partners work to mitigate wheat blast through projects supported by U.S. Agency for International Development (USAID), the Bill and Melinda Gates Foundation, the Australian Centre for International Agricultural Research (ACIAR), Indian Council for Agricultural Research (ICAR), CGIAR Research Program on WHEAT, and the CGIAR Platform for Big Data in Agriculture.

See more on wheat blast here: https://www.cimmyt.org/wheat-blast/

Madhav Bhatta identifies new unique genes for the use of synthetics in wheat breeding

This profile of PhD student and visiting CIMMYT-Turkey researcher Madhav Bhatta, by Emma Orchardson was originally posted on InSide CIMMYT.

Madhav Bhatta at a IWWIP testing site in Turkey.

“Agriculture has always been my passion. Since my childhood, I’ve been intrigued by the fact that agriculture can provide food for billions of people, and without it, we cannot survive.”   

Wheat is one of the world’s most widely grown cereal crops. Global production between 2017 and 2018 exceeded 700 million tons and fed more than one third of the world’s population. Based on the current rate of population increase, cereal production will need to increase by at least 50 percent by 2030.

However, biotic and abiotic stresses such as crop diseases and drought continue to place significant constraints on agricultural production and productivity. Global wheat yield losses due to diseases such as wheat rust have been estimated at up to $5 billion per year since the 1990s, and rising temperatures are thought to reduce wheat production in developing countries by up to 30 percent.

“The importance of biotic and abiotic stress resistance of wheat to ensuring food security in future climate change scenarios is not disputed,” says Madhav Bhatta. “The potential of wide-scale use of genetic resources from synthetic wheat to accelerate and focus breeding outcomes is well known.”

In his recently completed a PhD project, Bhatta focused on the identification of genes and genomic regions controlling resistance to biotic and abiotic stresses in synthetic hexaploid wheat, that is, wheat created from crossing modern wheat with its ancient grass relatives. His research used rich genetic resources from synthetic wheat to identify superior primary synthetics possessing resistance to multiple stresses. It also aimed to identify the respective genes and molecular markers that can be used for market-assisted transfer of the genes into high-yielding modern wheat germplasm.

“My study sought to evaluate the variation within this novel synthetic germplasm for improved grain yield, quality and mineral content, reduced toxic heavy metal accumulation, and identify the genes contributing to better yield, end-use and nutritional quality.”

“Working in a collaborative environment with other scientists and farmers was the most enjoyable aspect of my research.”

Working under the joint supervision of Stephen Baenziger, University of Nebraska-Lincoln, and Alexey Morgounov, CIMMYT, Bhatta spent two consecutive summers conducting field research at various research sites across Turkey. The research was conducted within the framework of the International Winter Wheat Improvement Program (Turkey-CIMMYT-ICARDA). Over the course of six months, he evaluated 126 unique synthetic wheat lines developed from two introgression programs, which he selected for their genetic diversity.

“The most fascinating thing was that we were able to identify several lines that were not only resistant to multiple stresses, but also gave greater yield and quality,” says Bhatta. “These findings have a direct implication for cereal breeding programs.”

Bhatta and his collaborators recommended 17 synthetic lines that were resistant to more than five stresses, including rusts, and had a large number of favorable alleles for their use in breeding programs. They also recommended 29 common bunt resistant lines, seven high yielding drought tolerant lines, and 13 lines with a high concentration of beneficial minerals such as iron and zinc and low cadmium concentration.

“We identified that the D-genome genetic diversity of synthetics was more than 88 percent higher than in a sample of elite bread wheat cultivars,’ Bhatta explains. “The results of this study will provide valuable information for wheat genetic improvement through the inclusion of this novel genetic variation for cultivar development.”

Madhav Bhatta completed his PhD in Plant Breeding and Genetics at the University of Nebraska-Lincoln, where he was a Monsanto Beachell-Borlaug International Scholar. He is now based at the University of Wisconsin-Madison, USA, where he recently began a postdoctoral research position in the Cereal Breeding and Genetics program. He is currently working on optimizing genomic selection models for cereal breeding programs and he looks forward to future collaborations with both public and private institutions.

The seeds of the superior synthetics are now available from CIMMYT-Turkey. For more information, contact Alexey Morgounov (a.morgounov@cgiar.org).

Read more about the results of Bhatta’s investigation in the recently published articles listed below:

  1. Bhatta M., P.S. Baenizger, B. Waters, R. Poudel, V. Belamkar, J. Poland, and A. Morgounov. 2018. Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 19 (10), 3237.
  2. Bhatta M., A. Morgounov, V. Belamkar, A. Yorgancilar, and P.S. Baenziger. 2018. Genome-Wide Association Study Reveals Favorable Alleles Associated with Common Bunt Resistance in Synthetic Hexaploid Wheat. Euphytica 214 (11). 200.
  3. Bhatta M, A. Morgounov, V. Belamkar, and P. S. Baenziger. 2018. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 19 (10), 591.
  4. Bhatta M, A. Morgounov, V. Belamkar, J. Poland, and P. S. Baenziger. 2018. Unlocking the Novel Genetic Diversity and Population Structure of Synthetic Hexaploid Wheat. BMC Genomics, 19:591. https://doi.org/10.1186/s12864-018-4969-2.
  5. Morgunov A., A. Abugalieva, A. Akan, B. Akın, P.S. Baenziger, M. Bhatta et al. 2018. High-yielding Winter Synthetic Hexaploid Wheats Resistant to Multiple Diseases and Pests. Plant genetic resources, 16(3): 273-278.

Q&A with Dave Hodson on MARPLE and Big Data

CIMMYT’s Dave Hodson taking wheat rust samples with Ethiopian farmers. Photo credit: John Innes Centre

The MARPLE (Mobile And Real-time PLant disease) project – a project to test and pilot a revolutionary mobile lab in Ethiopia, led by the John Innes Centre, the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR)—won the CGIAR Platform for Big Data in Agriculture Inspire Challenge Scale Up award in 2018.

The Inspire Challenge encourages CGIAR partners, universities and others to use big data approaches through innovative pilot projects to advance agricultural research and development. To be named a winner, projects must have real potential for developmental impact, have mobilized underused or misused data, and demonstrate meaningful partnerships with CGIAR and other sector members. Ultimately, the Inspire Challenge looks for novel approaches to inform policies and applications in agriculture and food security.

We sat down with CIMMYT Principal Scientist and rust pathologist Dave Hodson to ask him about the project and its relationship with Big Data for Agriculture.

What is the significance of Big Data to your work?
Advances in sequencing technology, and the use of innovative big data approaches on sequence data from thousands of yellow rust isolates, opened the door for Diane Saunders and colleagues at the John Innes Centre in the UK to develop revolutionary, near-real time, mobile pathogen diagnostic techniques using portable palm-sized gene sequencers. The final result being the first operational system in the world using nanopore sequence technology for rapid diagnostics and surveillance of complex fungal pathogens in situ.

How do you see the role of the CGIAR Platform for Big Data in Agriculture in your work?
Support from the CGIAR Big Data Platform was critical to establish the partnership between John Innes, the Ethiopian Institute of Agricultural Research (EIAR) and CIMMYT and enable piloting and testing of the new MARPLE diagnostic platform in Ethiopia. The choice of Ethiopia to be the first country for initial testing was based on several key factors. Firstly, a strong national partner in EIAR; secondly, the critical importance of wheat and wheat rust diseases in the country. Ethiopia is the largest wheat producer in sub-Saharan Africa, but it is also considered the gateway for new wheat rust strains entering into Africa from Asia. All these factors made Ethiopia the highest priority country to take the lead in testing this revolutionary new and rapid pathogen diagnostics platform.

How did it impact this MARPLE project?
The pilot and subsequent scale-up project from the CGIAR Big Data Platform has enabled in-country capacity to be developed, and cutting edge technology for rapid pathogen diagnostics to be deployed in the front-line in the battle against devastating wheat rust diseases. The scientific innovation in developing the MARPLE platform, coupled to the suitability of the technology for developing country partners has now attracted support and interest from other donors. Matching funds were recently obtained for the scale -up phase of MARPLE from the Delivering Genetic Gain in Wheat project (implemented by Cornell University and funded by the Bill and Melinda Gates Foundation and the UK Department for International Development). This scale-up phase of the project will see a set of distributed MARPLE hubs established and embedded within the Ethiopian wheat research system – resulting in a sentinel system for the rapid detection of new yellow rust races that is unparalleled anywhere in the world. The scientific breakthrough in developing rapid diagnostics for complex fungal pathogens using nanopore sequencing will permit the development of similar systems for other important fungal diseases in the future.

The MARPLE project was selected as a 2017 winner, with the team receiving 100,000 USD to put their ideas into practice. The team came runners up for the Scale Up award the following year, receiving an additional USD 125,000 for their outstanding ability to demonstrate the project’s proven viability and potential for impact.

Scaling to new heights in agriculture

How to scale? This question frequently comes up as projects look to expand and replicate results. In order to sustain enduring impacts for projects after their lifetime, agricultural programs are turning to scaling strategies. These strategies look beyond the numbers that are reached within a project and include sustainability and transformation beyond the project context. Methods and tools exist that help anticipate realistic and responsible scaling pathways.

The Scaling team at the International Maize and Wheat Improvement Center (CIMMYT), led by Lennart Woltering, drives the initiative to incorporate scaling principles into existing and developing projects to maximize impact.

Maria Boa recently joined the team as Scaling Coordinator. Last year, Boa and Woltering participated in regional meetings on scaling in Morocco, Tunisia and Vietnam, which highlighted the need for better dissemination of information on how to approach scaling, in addition to its benefits.

Participants of the Tunisia workshop collaborate on a group exercise.

According to Boa, one of the key messages highlighted throughout these events was that in order for scaling to take hold and be integrated into projects, “…there needs to be a shift in mindset to accept that change is complex and that most projects only address a fraction of the problem.” This is essential in using scaling to effectively support long-term results.

At a workshop in Tunisia organized by ICARDA, IFAD and CIMMYT in November 2018, many participants expressed interest in scaling strategy tools, but were puzzled on how to integrate them into their specific projects. Many determined that they were stuck developing scaling strategies in an outdated framework, or one that strictly focused on using technological innovations. One participant admitted that she was skeptical of scaling perspectives because many did not lie in her field of expertise.

The November 2018 CCAFS SEA Conference on Scaling in Vietnam provided a platform for the sharing and learning of experiences in the scaling world. Some of the key messages from the event included the importance of scaling agricultural innovations taking place in complex systems of agricultural transformation, and the necessity of joint cooperation from all involved stakeholders and their openness to taking on challenges as a way to support sustainable system change.

According to Boa, scaling is a process that heavily relies on strategic collaboration for lasting impact. “Projects often don’t take into account how they’re a part of a larger chain of potential change,” she says.

Already recognized as a sustainable leader within scaling, CIMMYT is looking to strengthen scaling efforts in order to foster a more enduring impact within CIMMYT projects and beyond.

Lennart Woltering presents at the CCAFS SEA Conference in Vietnam.

Currently, the Scaling team at CIMMYT is conducting research on the “science of scaling” as it continues to function as a “help desk,” providing support integrating scaling principles in proposals and projects. Its primary role is to consider a project’s scaling needs and guide the development of an informed strategy to leverage efforts and resources. Boa hopes that by integrating responsible scaling approaches early on, projects can better balance the trade-offs associated with change.

Success in scaling is measured by a project’s enduring impact. However, stakeholders need more experience and capacity to see programs through to their end and be willing to monitor them beyond that lifespan. CIMMYT is developing and collecting the tools to support stakeholders with these specific capacities.

Developing a scaling strategy can also bring additional benefits: a discussion about scaling opens the door for raising awareness and fostering actions among different stakeholders towards system change and sustainable impact.

City dwellers in Africa and Asia increasingly choose wheat, research shows

This blog by Mike Listman was originally posted on CIMMYT.org.

A baker makes the traditional wheat flatbread known as “naan roti” in Dinajpur, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

The developing world’s appetite for wheat is growing swiftly, driven in part by rising incomes, rapid urbanization and the expansion of families where both spouses work outside the house, according to a recent seminar by two international experts.

“Our research is picking up significant shifts in demand among cereals, including the increasing popularity of wheat in Asia and sub-Saharan Africa,” said Khondoker Mottaleb, socioeconomist for the International Maize and Wheat Improvement Center (CIMMYT), speaking at a seminar at the center on December 11, 2018.

In preliminary results of a study using household data from six countries in Asia and five in sub-Saharan Africa, Mottaleb and his associate, Fazleen Binti Abdul Fatah, senior lecturer at the University of Technology MARA, Malaysia, found that the households of both regions will eat more wheat by 2030, mainly in place of rice in Asia and of maize and other coarse grain cereals in Africa.

Speedy urbanization, higher incomes, population growth, and allied lifestyle changes are all driving this trend, said Fazleen. “Many urban women are working, so families are transitioning to bread and other convenient wheat-based foods and processed foods.”

A typical case according to Mottaleb is that of Bangladesh, a country whose population at 160 million is half that of the United States but with a geographical area equivalent to the US state of Ohio. The per capita GDP of Bangladesh grew from US$360 to US$1,516 during 2000-2017, and more than 35 percent of the country’s inhabitants now live in cities.

Meeting demand for wheat in Bangladesh

A 2018 paper by Mottaleb and fellow CIMMYT researchers shows that wheat consumption will increase substantially in Bangladesh by 2030 and the country needs to expand production or increase imports to meet the growing demand.

“The country purchases nearly 70 percent of its wheat at an annual cost near or exceeding US$1 billion, depending on yearly prices,” said Mottaleb. “Wheat prices are relatively low and wheat markets have been relatively stable, but if yields of a major wheat exporting country suddenly fall, say, from pest attacks or a drought, wheat markets would destabilize and prices would spike, as occurred in 2008 and 2011.”

In a 2018 study, the United Kingdom’s Agriculture and Horticulture Development Board (AHDB) cautioned that declining wheat cropping area worldwide and significant stockpiling by China — which holds nearly half the world’s wheat stocks but does not export any grain — were masking serious risk in global wheat markets.

A recent report ranked Bangladesh as the world’s fifth largest wheat importer. Since 2014-15 domestic wheat consumption there has increased by 57 percent from 4.9 million metric ton to 7.7 million metric tons. Last December, the Food and Agriculture Organization (FAO) of the United Nations forecast Bangladesh wheat import requirements of 6 million tons for this year — 34 percent above the previous five-year average following steady increases since 2012-13.

“The prevailing narrative has wealthier and more urban consumers shifting from basic foods to higher value foods, and this is doubtless occurring,” said Fazleen, “but our work shows a more nuanced scenario. In the traditional rice consuming economies in Asia, rural households are also eating more wheat, due to rapid dietary transformations.”

For Bangladesh, the researchers propose growing additional wheat on fallow and less-intensively-cropped land, as well as expanding the use of newer, high-yielding and climate-smart wheat varieties.

“Our work clearly shows the rising popularity of wheat across Asia and Africa,” said Mottaleb. “We urge international development agencies and policymakers to enhance wheat production in suitable areas, ensuring food security for the burgeoning number of people who prefer wheat and reducing dependence on risky wheat grain markets.”

In addition to the paper cited above, Mottaleb and colleagues have published recent studies on Bangladesh’s wheat production and consumption dynamics and changing food consumption patterns.

The authors thank the CGIAR Research Program on Wheat and the CGIAR Research Program on Policies, Institutions and Markets for its support for these studies.

University of Queensland honors student studies tan spot resistance in wheat at CIMMYT

This story, part of a series on the international agricultural research projects of recipients of the Crawford Fund’s International Agricultural Student Award, was originally posted on the Crawford Fund blog

In 2018, Tamaya Peressini, from The Queensland Alliance for Agriculture and Food Innovation (QAAFI), a research institute of the University of Queensland (UQ), travelled to CIMMYT in Mexico as part of her Honours thesis research focused on a disease called tan spot in wheat.

Tamaya performing disease evaluations 10 days post infection at CIMMYT’s glasshouse facilities

Tan spot is caused by the pathogen Pyrenophora triciti-repentis (Ptr), and her project aimed to evaluate the resistance of tan spot in wheat to global races to this pathogen.

“The germplasm I’m studying for my thesis carries what is known as adult plant resistance (or APR) to tan spot, which has demonstrated to be a durable source of resistance in other wheat pathosystems such as powdery mildew,” said Tamaya.

Symptoms of tan spot on wheat plants

Tan spot is prevalent worldwide, and in Australia causes the most yield loss out of the foliar wheat diseases. In Australia, there is only one identified pathogen race that is prevalent called Ptr Race 1. For Ptr Race 1, the susceptibility gene Tsn1 in wheat is the main factor that results in successful infection in Ptr strains that carry Toxin A. However, globally it is a more difficult problem, as there are seven other pathogen races that consist of different combinations of necrotrophic toxins. Hence, developing cultivars that are multi-race resistant to Ptr presents a significant challenge to breeders as multiple resistant genes would be required for resistance to other pathogens.

“At CIMMYT I evaluated the durability of APR I identified in plant material in Australia by inoculating with a local strain of Ptr and also with a pathogen that shares ToxA: Staganospora nodorum.”

“The benefit of studying this at CIMMYT was that I had access to different strains of the pathogen which carry different virulence factors of disease, I was exposed to international agricultural research, and importantly, I was able to create research collaborations that would allow the APR detected in this population to have the potential to reach developing countries to assist in developing durably resistant wheat cultivars for worldwide deployment,” explained Tamaya.

Recent work in Dr Lee Hickey’s laboratory in Queensland has identified several landraces from the Vavilov wheat collection that exhibited a novel resistance to tan spot known as adult plant resistance (APR). APR has proven to be a durable and broad-spectrum source of resistance in wheat crops; namely with the Lr34 gene which confers resistance to powdery mildew and leaf stem rust of wheat.

“My research is focussed on evaluating this type of resistance and identifying whether it is resistant to multiple pathogen species and other races of Ptr. This is important to the Queensland region, as the northern wheat belt is significantly affected by tan spot disease. Introducing durable resistance genes to varieties in this region would be an effective pre-breeding strategy because it would help develop crop varieties that would have enhanced resistance to tan spot should more strains reach Australia. Furthermore, it may provide durable resistance to other necrotrophic pathogens of wheat,” said Tamaya.

The plant material Tamaya studied in her honours thesis was a recombinant inbred line (RIL) population, with the parental lines being the APR landrace (carries Tsn1) and the susceptible Australian cultivar Banks (also carries Tsn1). To evaluate the durability of resistance in this population to other strains of Ptr, this material along with the parental lines of the population and additional land races from the Vavilov wheat collection were sent to CIMMYT for Tamaya to perform a disease assay.

“At CIMMYT I evaluated the durability of APR identified in plant material in Australia by inoculating with a local strain of Ptr and also with a pathogen that shares ToxA: Staganospora nodorum. After infection, my plant material was kept in 100 per cent humidity for 24 hours (12 hours light and 12 hours dark) and then transferred back to regular glasshouse conditions. At 10 days post infection I evaluated the resistance in the plant material.”

From the evaluation, the APR RIL line demonstrated significant resistance compared to the rest of the Australian plant material against both pathogens. The results are highly promising, as they demonstrate the durability of the APR for both pre-breeding and multi-pathogen resistance breeding. Furthermore, this plant material is now available for experimental purposes at CIMMYT where further trials can validate how durable the resistance is to other necrotrophic pathogens and also be deployed worldwide and be tested against even more strains of Ptr.
“During my visit at CIMMYT I was able to immerse myself in the Spanish language and take part in professional seminars, tours, lab work and field work around the site. A highlight for me was learning to prepare and perform toxin infiltrations for an experiment comparing the virulence of different strains of spot blotch.”

“I also formed valuable friendships and research partnerships from every corner of the globe and had valuable exposure to the important research underway at CIMMT and insight to the issues that are affecting maize and wheat growers globally. Of course, there was also the chance to travel on weekends; where I was able to experience the lively Mexican culture and historical sites – another fantastic highlight to the trip!”

Visiting the Sun and Moon temples of Teotihuacan

“I would like to thank CIMMYT and Dr Pawan Singh for hosting me and giving the opportunity to learn, grow and experience the fantastic research that is performed at CIMMYT and opportunities to experience parts of Mexico. The researchers and lab technicians were all so friendly and accommodating. I would also like to thank my supervisor Dr Lee Hickey for introducing this project collaboration with CIMMYT. Lastly, I would like to thank the Crawford Fund Queensland Committee for funding this visit; not only was I able to immerse myself in world class plant pathology research, I have been given valuable exposure to international agricultural research that will give my research career a boost in the right direction,” concluded Tamaya.

The saving grace of a hefty investment

By Md. Ashraful Alam, Sultana Jahan and M. Shahidul Haque Khan

Bangladesh farmer Raju Sarder rests his sickle and sits happily on a recently acquired reaper. Photo: iDE/Md. Ikram Hossain

A man in his early 20s walked the winding roads of Sajiara village, Dumuria upazila, Khulna District in Bangladesh. His head hanging low, he noticed darkness slowly descending and then looked up to see an old farmer wrapping up his own daily activities. With traditional tools in hand, the farmer looked exhausted. The young man, Raju Sarder, considered that there had to be a better way to farm while alleviating his drudgery and that of others in the community.

Determined to act, Raju set out to meet Department of Agricultural Extension (DAE) officials the very next day. They informed him about the Mechanization and Irrigation project of the Cereal Systems Initiative for South Asia (CSISA MI). They also introduced him to the project’s most popular technologies, namely the power tiller operated seeder, reaper and axial flow pumps, all of which reduce labor costs and increase farming efficiency.

Raju found the reaper to be the most interesting and relevant for his work, and contacted CSISA SI to acquire one.

The first challenge he encountered was the cost — $1,970 — which as a small-scale farmer he could not afford. CSISA MI field staff assured him that his ambitions were not nipped in the bud and guided him in obtaining a government subsidy and a loan of $1,070 from TMSS, one of CSISA MI’s micro financing partners. Following operator and maintenance training from CSISA MI, Raju began providing reaping services to local smallholder rice and wheat farmers.

He noticed immediately that he did not have to exert himself as much as before but actually gained time for leisure and his production costs dwindled. Most remarkably, for reaping 24 hectares Raju generated a profit of $1,806; a staggering 15 times greater than what he could obtain using traditional, manual methods and enough to pay back his loan in the first season.

“There was a time when I was unsure whether I would be able to afford my next meal,” said Raju, “but it’s all different now because profits are pouring in thanks to the reaper.”

As a result of the project and farmers’ interest, field labor in Raju’s community is also being transformed. Gone are the days when farmers toiled from dawn to dusk bending and squatting to cut the rice and wheat with rustic sickles. Laborious traditional methods are being replaced by modern and effective mechanization.

Through projects such as CSISA MI, CIMMYT is helping farmers like Raju to become young entrepreneurs with a bright future. Once poor laborers disaffected and treated badly in their own society, these youths now walk with dignity and pride as significant contributors to local economic development.

CSISA MI is a partnership involving the International Maize and Wheat Improvement Center (CIMMYT) and iDE, a non-governmental organization that fosters farmers’ entrepreneurial development, with funding from the USAID mission in Bangladesh under the Feed the Future Initiative.