Bangladesh leads the way in global fight against wheat blast

An ongoing project was praised for its swift progress in the fight against wheat blast in Bangladesh and South Asia

Eric Huttner, ACIAR Research Program Manager speaking at last month’s mid-term review on wheat blast in Bangladesh and South Asia

At a mid-term review event last month at the BRAC Learning Centre in Dinajpur, Bangladesh, professionals from the Bangladesh Ministry of Agriculture, the Bangladesh Wheat and Maize Research Institute (BWMRI), the Bangladesh Agriculture Research Institute (BARI), the Department of Agriculture Extension (DAE), the Krishi Gobeshona Foundation (KGF), the Bangladesh Agriculture Development Corporation (BADC) and the International Maize and Wheat Improvement Center (CIMMYT) discussed progress made in the battle against wheat blast in Bangladesh and South Asia.

Wheat blast is a fast-acting and devastating fungal disease that threatens wheat production and food security in South America and South Asia. The disease, which originated in South America and first appeared in Bangladesh in 2016, can by dispersed by wind across large distances and spores can be seed borne. There is deep concern among scientists that the disease could spread further across South Asia. A 2018 ex-ante analysis found that in Bangladesh, India and Pakistan wheat blast could potentially cause losses of 0.89 – 1.77 million tons each year, with 7 million hectares of growing area at risk.

In 2017, CIMMYT, BWMRI and the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF) in Bolivia joined forces in an international effort to tackle wheat blast through widespread adoption of blast resistant wheat varieties.

The project, funded by the Australian Centre for International Agricultural Research (ACIAR) addresses wheat blast in Bangladesh and South Asia through the identification of new sources of resistance genes for wheat blast and development of wheat blast resistant varieties. The germplasm, genes and markers, and genetic information developed through the project are shared with South Asian national wheat breeding programs and other researchers, finally ending up in farmers’ fields as resistant varieties.

The review meeting was chaired by BWMRI Director General Israil Hossain, and featured remarks by Bangladesh’s Additional Secretary of the Ministry of Agriculture Kamala Ranjan Das.

“This project has over-delivered on its milestones,” said Eric Huttner, ACIAR Research Program Manager and lead of the review. “It’s very likely that the project will reduce the risk of blast on wheat production in Bangladesh.”

Early impacts in terms of research capacity and infrastructure are very clear:

  • The project-established precision phenotyping platform in Jashore — the first of its kind in Bangladesh and the region —  is running at full capacity, screening for blast in wheat germplasm materials from as far away as China, the United States and Europe.  The facility currently has the capacity to evaluate almost 5,000 wheat germplasm materials per season and there are ongoing plans for expansion and improvement.
  • Sixty-nine researchers and development professionals, including 9 women, have benefited from the capacity development activities.
  • Molecular research is also making progress. Pawan Singh, project leader and head of Wheat Pathology at CIMMYT, noted that the rapid response was possible due to collective and collaborative action by research partners in this project and beyond.

Meeting attendees emphasized the urgency and importance of the project, which is set to conclude in 2021, in the battle against a fast-moving and devastating disease.

As Huttner told attendees, “Now the resistant or tolerant materials need to be efficiently deployed for breeding high-performance wheat varieties that reach stakeholders as early as possible.”

The Identification of sources of resistance to wheat blast and their deployment in wheat varieties adapted to Bangladesh project is funded by the Australian Centre for International Agricultural Research, with Bangladesh Wheat and Maize Research Institute and the National Institute of Agricultural and Forestry Innovation as key partners. More information about the project can be found on the project factsheet.

Experts gather in Turkey to share findings on the diversity and health benefits of wheat

Highlights from the International Conference on Wheat Diversity and Human Health which took place in Istanbul this week

Durum wheat spikes, Ciudad Obregon, Mexico. Photo credit: CIMMYT/Alfonso Cortés

Istanbul hosted a milestone conference this week convening experts from the region and the globe to examine the link between wheat and human health.  Although wheat is the second most popular food crop in the world, and a vital source of food and nutrition for humans dating from the earliest days of agriculture, its reputation as a health food has taken a hit in western popular culture in recent times.

The International Conference on Wheat Diversity and Human Health, makes a strong, scientifically supported case for a range of health benefits from wheat and its countless varieties, relatives and the foods made from them.

Beyond the well-publicized benefits of consuming fiber from whole grain wheat products – including lower risk of coronary disease, diabetes, hypertension, obesity, Type 2 diabetes and colon cancer – scientists at the conference affirmed that wheat also contains compounds such as phenolics, flavonoids and carotenoids that:

  • have antioxidant and anti-inflammatory properties,
  • control obesity,
  • reduce the risk of cancer and chronic diseases,
  • have a beneficial effect on the working memory,
  • can prevent neurological diseases such as Alzheimer’s and Parkinson’s diseases,
  • can delay aging and
  • can prevent Vitamin A deficiency, among many other attributes.


As remarkable as these benefits may be, wheat’s potential for improving nutrition and health worldwide is even greater.   

A number of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT) presented evidence this week on new paths to further increase and promote these traits in wheat.

Velu Govindan speaking about his research on biofortification at this week’s conference. Photo credit: Fatih Özdemir
  • CIMMYT senior scientist and wheat breeder Velu Govindan explained the progress and potential of breeding wheat with enhanced levels of grain zinc and iron as a cost-effective, sustainable solution to malnutrition.   To date, more than 12 biofortified high zinc wheat varieties have been released, reaching close to 1 million households in target countries such as India and Pakistan. With the help of advanced genomics and speed breeding these varieties have the potential to become the standard for farmers, particularly in developing countries.
  • CIMMYT cropping systems agronomist ML Jat and his co-authors demonstrated how farming techniques that improve soil health, diversify production and enhance growing environments also increase the nutritional quality of wheat – critical in the face of climate change and higher CO2 concentrations that are projected to reduce the protein content of rice and wheat by almost 8% by 2050.
  • Maria Itria Ibba, head of CIMMYT’s wheat quality lab, shared an idea for helping improve global dietary fiber consumption without radically changing eating habits: develop wheat with increased Arabinoxylans (AX) — fiber components associated with reduced risk of diabetes, cholesterol, cardiovascular disease and colon cancer located in the endosperm, the part of the grain most often used in refined flour. Her preliminary findings suggest that AX content is controlled by a relatively small number of genes, which could be identified through molecular markers to effectively select for this trait in the breeding process.
Maria Itria Ibba speaking about her research on improving dietary fiber consumption. Photo credit: Fatih Özdemir

Protecting and promoting wheat diversity

Many presenters discussed ways to protect and promote wheat’s wide diversity – from modern varieties, traditional landraces, ancient grains, colored wheat and different species – all of which have huge potential to enrich our diet.

  • Alex Morgunov, leader of the International Winter Wheat Improvement Program and a conference organizer, described his research in Afghanistan – where wheat is the life-sustaining food grain and no meal is complete without a slice of wheat bread — to protect, improve, and distribute its rare and numerous valuable wheat landraces. These ancient varieties bring diversity, distinct baking characteristics and nutrition from farmer fields to bakeries and to research stations, where they are employed in breeding efforts to capture their unique desirable traits.

As Tom Payne, head of CIMMYT’s Wheat Germplasm Collections pointed out, diversity is a crucial element to health, and genebanks such as CIMMYT’s safeguard some of the largest and most widely used collections of crop diversity in the world, critical to ending hunger and improving food and nutrition security.

Hans-Joachim Braun, director of CIMMYT’s global wheat program and co-chair of the event concluded the conference with remarks on future perspectives for wheat diversity and human health. He highlighted how 830 million people in the world – 11% of the population- still do not have enough to eat.

Hans Braun gives his concluding remarks. Photo credit: Fatih Özdemir

The International Conference on Wheat Diversity and Human Health took place from Oct 22 – 24 in Istanbul, Turkey.

“Pilots never fail, pilots never scale:” Why the global development community needs a more realistic approach to reaching billions

This article by Lennart Woltering  was originally posted on NextBillion.net as part of the series “Scaling Up Without Selling Out.” The CGIAR Research Program on Wheat (WHEAT) is a funder of this work.

Wheat plots under trial at CIMMYT’s Norman E. Borlaug Experiment Station, Ciudad Obregon. Photo credit: CIMMYT.

We live in an era that calls for large-scale social and environmental transformation. But society has taken only meager steps towards producing the unprecedented changes needed to achieve the Sustainable Development Goals. Those of us working on sustainable rural development understand that we face enormous challenges: from ending hunger and improving nutrition, to preserving vital ecosystems, tackling climate change, empowering women and ending poverty. But we are still caught up in a 20th century paradigm that sees the world as a logical, linear, technology-centric system. This approach has hardly worked in the past, and it will certainly fail in the future. We need to change the underlying system. We need a new way of working.

In a new paper, my colleagues and I at the International Maize and Wheat Improvement Center (CIMMYT) joined up with development experts to argue that agricultural development projects should stop focusing narrowly on changing farming conditions within a specific project context. For too long, the dominant approach has been to develop new agricultural practices and technologies, prove that they work, spread them to a few hundred farmers through controlled pilot projects, and then hope this is enough to convince governments, industry and millions of smallholder farmers to do things differently. This is akin to inventing the mobile phone but ignoring the need for electricity, cellular towers, network providers, or any of the other supporting elements that enable the use of the phone.

Instead, we argue that projects should be seen as vehicles for changing the underlying system that enables a technology to be successfully used by millions. This means acknowledging and engaging with the complex array of real-world elements that comprise these systems, such as infrastructure, market forces, politics, people and power relationships. We do not suggest that project implementers become experts in all of these things, but rather that they need to take them into account when developing scalable solutions, by studying the best scaling process for a particular context, and positioning their contributions within that wider context.

We need to change course and embrace new attitudes, new skills and new ways of collaborating if we want to produce sustainable systems change at scale. And one important part of this process involves reconsidering our approach to pilot programs.

Pilots never fail, pilots never scale
Most pilots test whether an innovation works in a particular context. We liken this to building a greenhouse (a controlled environment) within a landscape (the real world). Pilot projects rely heavily on external resources and expertise, and are shielded from real world challenges like politics, regulations, market forces and finance. A crucial feature of pilot programs, and a key limitation, is that they don’t face the same pressure as actual programs to reach as many people as possible within a limited timeframe. That means they aren’t generating important lessons about the conditions needed to enable sustainable long-term adoption.

As a result, when the time comes to scale up a successful pilot project, we generally take one of two paths:

One path involves building a bigger greenhouse, which means expanding the controlled environment by doing more of the same with more money. But this approach is expensive, and unlikely to produce lasting change. The expanded project may indeed reach an impressive number of households, but this is no guarantee that they can and will continue to use a technology after the project ends. And this also doesn’t guarantee that adoption will spread.

The other conventional approach to scaling a pilot program is to simply remove the greenhouse and assume the innovation is so good that it will spontaneously scale itself. But as any gardener knows, a plant will not easily survive under real conditions once a greenhouse is removed. Likewise, farming communities are unlikely to continue using a new practice or technology if the surrounding system remains unchanged, since it is this very system that shaped their conventional way of farming.

Steps for achieving large scale – and lasting – change
So what would a more effective approach to scale look like? We reviewed decades of experience and insights from a number of sectors, including agriculture, health, education, nutrition and urban planning. We identified the following strategies that can help rural development projects change their approach towards achieving impact:

  1. Adopt a new mindset: Understand that overlapping economic social, technical and political systems shape peoples’ choices and behaviors. Recognize the stakeholder dynamics that determine the present situation. You need to understand the key players and rules of the game in order to engage with – and influence – them.
  2. Design for scale from the start: Asking “Does the pilot project work?” is not enough. Start by asking “What happens beyond the pilot project, if it works?” Then work with strategic local partners that are willing and able to provide public/private funding and leadership to sustain the initiative once the pilot project ends. But keep in mind: This also means considering – and planning for – the unintended consequences that come along with big change initiatives.
  3. Clarify your role: Scaling means intervening into a range of elements within a system, and implementing institutions need to recognize their strengths and limitations in doing so. If they find that they lack any key capabilities that could reduce a program’s effectiveness, they should collaborate strategically with others to better influence the many different parts of the system.
  4. See pilots as building blocks: Rather than viewing pilot projects as distinct entities, see them as part of a bigger ecology of initiatives to achieve long-term change – for example, as elements of a sector or country development strategy, or of other emerging market-led initiatives.

The global agricultural development community is starting to come to grips with this new mindset and way of working. For instance, in Zimbabwe, CIMMYT and its partners are taking a fresh approach to encouraging small-scale farm mechanization. We are working on strengthening a wide range of functions that are needed to support a market for two-wheeled tractors. This includes creating demand for machinery among local smallholders through farmer-to-farmer demonstrations, field days and ICT solutions. The initiative also offers technical and business development training to service providers, mechanics, artisans and manufacturers, and develops the capacity of existing vocational training centers to provide ongoing machinery trainings. Private sector partners can access valuable insights and intelligence on the performance of different machines and their costs and benefits, and can also access profiles of potential customers, thus spurring demand. And aspiring service providers are connected to financial institutions that can provide loans for machinery purchase. This approach goes far beyond the typical technology-oriented pilot project, and shows the positive steps being taken to engage with, and ultimately disrupt, the different elements of the underlying system.

Pilot projects last 2-4 years, but scaling a successful pilot to national application can take 15 years. While we are seeing more initiatives move away from the technology transfer mindset focused only on products, end users and numbers, and towards a more systems-focused approach, critical mass is a long way off. Agricultural development organizations and their funders need to urgently change course and position themselves as key players in changing the system at scale, rather than pushing an innovation into the rigid, incumbent system. This requires linking up with the right partners on the ground, who can help make this broader approach to sustainable development into the “new normal.”

Acknowledgments: This work was funded by the CGIAR Research Programs MAIZE (www.maize.org) and WHEAT (www.wheat.org) coordinated by the International Maize and Wheat Improvement Center (CIMMYT) in Mexico. The authors worked in collaboration with Management Systems International (MSI) and the PPPLab (supported by the Directorate General for International Cooperation (DGIS) and SNV Netherlands Development Organization). The German Federal Ministry for Economic Cooperation and Development (BMZ) supported the work through the Integrated Expert program of Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of CRP MAIZE, CRP WHEAT, GIZ, DGIS or SNV.

Fellowship for women agricultural researchers in MENA sets future leaders on the path to success

The first cohort of Fellows in the Arab Women Leaders in Agriculture fellowship program.

In May of this year, 22 women from the Middle East and North Africa (MENA) region won a competitive fellowship in agricultural research, sponsored by the International Center for Biosaline Agriculture (ICBA), the Bill & Melinda Gates Foundation, the Islamic Development Bank (IsDB) and the  CGIAR Research Program on Wheat (WHEAT).

 The Arab Women Leaders in Agriculture (Awla) fellowship program, the first of its kind, is designed to develop a cadre of aspiring Arab women researchers who are equipped with the knowledge and skills to make a positive difference in agriculture sustainability, in their countries in particular and the Arab region as a whole.

The cornerstones of the Awla fellowship are team-based capstone projects designed to put the skills, tools and knowledge gained during the program to practical use. Diverse teams of Fellows from varying nationalities and backgrounds are expected to produce a solution to a key challenge to women in agriculture, guided by the mentors, the Awla Steering Committee and selected stakeholders nominated by the Fellows. Fellows can choose from a variety of interdisciplinary topics as well as agriculture specific, as long as their topic of choice has a convincing value proposition. At the end of the fellowship program, the teams will present their capstone projects to relevant stakeholders to seek funding.

The first cohort of Awla Fellows — which includes researchers from Algeria, Egypt, Jordan, Lebanon, Morocco and Tunisia – met from June 30 to July 7 in Tunisia for an introductory workshop to kick off their 10-month fellowship. WHEAT is funding two students in this cohort.

The Awla Fellows are a highly successful group of agricultural engineers, professors, wheat breeders and working researchers in agronomy, biotechnology, soil sciences and other technical agricultural fields.  The orientation workshop gave them the opportunity to get to know each other and their selected mentors, participate in trainings designed to build their leadership and project management capacity, and gain an understanding of the online coursework and assignments that will make up their training.

Leadership and guidance
The workshop began with 6 days of training in positive psychology applications in leadership – a course that covered how to integrate concepts of resilience, creativity, finding meaning and purpose and more into both their interpersonal relationships and their organization management.

Next came a 3-day course to introduce the concepts of design thinking, a process for creative problem solving that encourages organizations to focus on the human needs of the people for whom they are creating. The Awla Fellows were encouraged to use these concepts to brainstorm notes for their team-based capstone projects, which involved addressing a key challenge faced by women in agriculture.

Mentorships
An important objective of the Tunisia workshop was to clarify roles and set expectations for the Fellows’ relationships with their mentors. Awla mentors, nearly all of whom joined their mentees in Tunisia, ranged from laboratory directors, lead professors, and government officials.  A 2-day mentoring orientation helped to establish the semi-structured mentoring relationship, whereby mentors will share their knowledge, skills and experience with the Fellows to help their development during the course of the Awla program and beyond.

Coursework
The Awla Fellowship consists of a series of online courses ranging from project planning to science writing, research methods and data management. Awla administrators ensured each Fellow had full access to the customized set of courses.  Senior Fellows who complete the Awla program will have access to more than 3000 other courses across domains.

Support
Throughout the program, Awla administrators will continue to support the Fellows both virtually, by following up their on-line courses and capstone projects and seeking funding for conference participation, and in person during an upcoming workshop in Tunis from October 28 to November 4, 2019.  A final closing workshop, hosted by the International Center for Biosaline Agriculture in the United Arab Emirates, will take place in February 2020.  The Awla funders will then plan another cycle of the program, with a new cohort of Fellows.

The MENA region faces critical and urgent agricultural challenges related to improved food security and nutrition, a better research and development landscape, and economic and social benefits of a narrowed gender gap that will require both innovative and inclusive solutions.  With this strong foundation, the Awla Fellows are poised to become leaders that can take on these challenges.

###

The Arab Women Leaders in Agriculture fellowship is hosted by the International Center for Biosaline Agriculture (ICBA) and funded by the Bill & Melinda Gates Foundation, The Islamic Development Bank (IsDB) Group and the CGIAR Research Program on Wheat

Why cereals matter: the cereals imperative of future food systems

The world urgently needs a transformation of the global food system, leading to healthier diets for all and a drastic reduction in agriculture’s environmental impact. The major cereal grains must play a central role in this new revolution for the benefit of the world’s poorest people.

This op-ed piece by Martin Kropff and Matthew Morell was originally posted on CIMMYT.org

Pioneering research on our three most important cereal grains — maize, rice, and wheat — has contributed enormously to global food security over the last half century, chiefly by boosting the yields of these crops and by making them more resilient in the face of drought, flood, pests and diseases. But with more than 800 million people still living in chronic hunger and many more suffering from inadequate diets, much remains to be done. The challenges are complicated by climate change, rampant degradation of the ecosystems that sustain food production, rapid population growth and unequal access to resources that are vital for improved livelihoods.

In recent years, a consensus has emerged among agricultural researchers and development experts around the need to transform global food systems, so they can provide healthy diets while drastically reducing negative environmental impacts. Certainly, this is a central aim of CGIAR — the world’s largest global agricultural research network — which views enhanced nutrition and sustainability as essential for achieving the Sustainable Development Goals. CGIAR scientists and their many partners contribute by developing technological and social innovations for the world’s key crop production systems, with a sharp focus on reducing hunger and poverty in low- and middle-income countries of Africa, Asia and Latin America.

The importance of transforming food systems is also the message of the influential EAT-Lancet Commission report, launched in early 2019. Based on the views of 37 leading experts from diverse research disciplines, the report defines specific actions to achieve a “planetary health diet,” which enhances human nutrition and keeps the resource use of food systems within planetary boundaries. While including all food groups — grains, roots and tubers, pulses, vegetables, fruits, tree nuts, meat, fish, and dairy products — this diet reflects important shifts in their consumption. The major cereals, for example, would supply about one-third of the required calories but with increased emphasis on whole grains to curb the negative health effects of cheap and abundant supplies of refined cereals.

This proportion of calories corresponds roughly to the proportion of its funding that CGIAR currently invests in the major cereals. These crops are already vital in diets, cultures, and economies across the developing world, and the way they are produced, processed and consumed must be a central focus of global efforts to transform food systems. There are four main reasons for this imperative.

Aneli Zárate Vásquez (left), in Mexico's state of Oaxaca, sells maize tortillas for a living. (Photo: P. Lowe/CIMMYT)
Aneli Zárate Vásquez (left), in Mexico’s state of Oaxaca, sells maize tortillas for a living. (Photo: P. Lowe/CIMMYT)

1. Scale and economic importance

The sheer extent of major cereal production and its enormous value, especially for the poor, account in large part for the critical importance of these crops in global food systems. According to 2017 figures, maize is grown on 197 million hectares and rice on more than 167 million hectares, mainly in Asia and Africa. Wheat covers 218 million hectares, an area larger than France, Germany, Italy, Spain and the UK combined. The total annual harvest of these crops amounts to about 2.5 billion tons of grain.

Worldwide production had an estimated annual value averaging more than $500 billion in 2014-2016. The prices of the major cereals are especially important for poor consumers. In recent years, the rising cost of bread in North Africa and tortillas in Mexico, as well as the rice price crisis in Southeast Asia, imposed great hardship on urban populations in particular, triggering major demonstrations and social unrest. To avoid such troubles by reducing dependence on cereal imports, many countries in Africa, Asia and Latin America have made staple crop self-sufficiency a central element of national agriculture policy.

Women make roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at their home in the Dinajpur district, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
Women make roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at their home in the Dinajpur district, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

2. Critical role in human diets

Cereals have a significant role to play in food system transformation because of their vital importance in human diets. In developing countries, maize, rice, and wheat together provide 48% of the total calories and 42% of the total protein. In every developing region except Latin America, cereals provide people with more protein than meat, fish, milk and eggs combined, making them an important protein source for over half the world’s population.

Yellow maize, a key source of livestock feed, also contributes indirectly to more protein-rich diets, as does animal fodder derived from cereal crop residues. As consumption of meat, fish and dairy products continues to expand in the developing world, demand for cereals for food and feed must rise, increasing the pressure to optimize cereal production.

In addition to supplying starch and protein, the cereals serve as a rich source of dietary fiber and nutrients. CGIAR research has documented the important contribution of wheat to healthy diets, linking the crop to reduced risk of type 2 diabetes, cardiovascular disease, and colorectal cancer. The nutritional value of brown rice compared to white rice is also well known. Moreover, the recent discovery of certain genetic traits in milled rice has created the opportunity to breed varieties that show a low glycemic index without compromising grain quality.

Golden Rice grain (left) compared to white rice grain. Golden Rice is unique because it contains beta carotene, giving it a golden color. (Photo: IRRI)
Golden Rice grain (left) compared to white rice grain. Golden Rice is unique because it contains beta carotene, giving it a golden color. (Photo: IRRI)

3. Encouraging progress toward better nutritional quality

The major cereals have undergone further improvement in nutritional quality during recent years through a crop breeding approach called “biofortification,” which boosts the content of essential vitamins or micronutrients. Dietary deficiencies of this kind harm children’s physical and cognitive development, and leave them more vulnerable to disease. Sometimes called “hidden hunger,” this condition is believed to cause about one-third of the 3.1 million annual child deaths attributed to malnutrition. Diverse diets are the preferred remedy, but the world’s poorest consumers often cannot afford more nutritious foods. The problem is especially acute for women and adolescent girls, who have unequal access to food, healthcare and resources.

It will take many years of focused effort before diverse diets become a reality in the lives of the people who need them most. Diversified farming systems such as rice-fish rotations that improve nutritional value, livelihoods and resilience are a step in that direction. In the meantime, “biofortified” cereal and other crop varieties developed by CGIAR help address hidden hunger by providing higher levels of zinc, iron and provitamin A carotenoids as well as better protein quality. Farmers in many developing countries are already growing these varieties.

A 2018 study in India found that young children who ate zinc-biofortified wheat in flatbread or porridge became ill less frequently. Other studies have shown that consumption of provitamin A maize improves the body’s total stores of this vitamin as effectively as vitamin supplementation. Biofortified crop varieties are not a substitute for food fortification (adding micronutrients and vitamins during industrial food processing). But these varieties can offer an immediate solution to hidden hunger for the many subsistence farmers and other rural consumers who depend on locally produced foods and lack access to fortified products.

Ruth Andrea (left) and Maliamu Joni harvest cobs of drought-tolerant maize in Idakumbi, Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)
Ruth Andrea (left) and Maliamu Joni harvest cobs of drought-tolerant maize in Idakumbi, Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)

4. Wide scope for more sustainable production

Cereal crops show much potential not only for enhancing human heath but that of the environment as well. Compared to other crops, the production of cereals has relatively low environmental impact, as noted in the EAT-Lancet report. Still, it is both necessary and feasible to further enhance the sustainability of cereal cropping systems. Many new practices have a proven ability to conserve water as well as soil and land, and to use purchased inputs (pesticides and fertilizers) far more efficiently. With innovations already available, the amount of water used in current rice cultivation techniques, for example, can be significantly reduced from its present high level.

Irrigation scheduling, laser land leveling, drip irrigation, conservation tillage, precision nitrogen fertilization, and cereal varieties tolerant to drought, flooding and heat are among the most promising options. In northwest India, scientists recently determined that optimal practices can reduce water use by 40%, while maintaining yields in rice-wheat rotations. There and in many other places, the adoption of new practices to improve cereal production in the wet season not only leads to more efficient resource use but also creates opportunities to diversify crop production in the dry season. Improvements to increase cereal crop yields also reduces their environmental footprint; using less land, enhancing carbon sequestration and biodiversity and, for rice, reducing methane emissions per kilo of rice produced. Given the enormous extent of cereals cultivation, any improvement in resource use efficiency will have major impact, while also freeing up vast amounts of land for other crops or natural vegetation.

A major challenge now is to improve access to the knowledge and inputs that will enable millions of farmers to adopt new techniques, making it possible both to diversify production and grow more with less. Another key requirement consists of clear signals from policymakers, especially where land and water are limited, about the priority use of these resources — for example, irrigating low-value cereals to bolster food security versus applying the water to higher value crops and importing staple cereals.

Morning dew on a wheat spike. (Photo: Vadim Ganeyev/CIMMYT)
Morning dew on a wheat spike. (Photo: Vadim Ganeyev/CIMMYT)

Toward a sustainable dietary revolution

Future-proofing the global food system requires bold steps. Policy and research need to support a double transformation, centered on nutrition and sustainability.

CGIAR works toward nutritional transformation of our food system through numerous global partnerships. We give high priority to improving cereal crop systems and food products, because of their crucial importance for a growing world population. Recognizing that this alone will not suffice for healthy diets, we also strongly promote greater dietary diversity through our research on various staple crops and production systems and by raising public awareness of more balanced and nutritious diets.

To help achieve a sustainability transformation, CGIAR researchers and partners have developed a wide array of techniques that use resources more efficiently, enhance the resilience of food production in the face of climate change and reduce greenhouse gas emissions, while achieving sustainable increases in crop yields. At the same time, we are generating new evidence on which techniques work best under what conditions to target the implementation of these solutions more effectively.

The ultimate impact of our work depends crucially on the growing resolve of developing countries to promote better diets and more sustainable food production through strong policies and programs. CGIAR is well prepared to help strengthen these measures through research for development, and we are confident that our work on cereals, with continued donor support, will have high relevance, generating a wealth of innovations that help drive the transformation of global food systems.

Martin Kropff is the Director General of the International Maize and Wheat Improvement Center (CIMMYT).

Matthew Morell is the Director General of the International Rice Research Institute (IRRI).

Ten things you should know about maize and wheat

Can you imagine a world without maize and wheat? We can’t!

This article by Mike Listman and Rodrigo Ordóñez was originally posted on the website of the International Maize and Wheat Improvement Center.

As the calendar turns to October 16, it is time to celebrate World Food Day. At the International Maize and Wheat Improvement Center (CIMMYT), we are bringing you a few facts you should know about maize and wheat, two of the world’s most important crops.

1. Billions of people eat maize and wheat.

Wheat is eaten by 2.5 billion people in 89 countries. About 1 billion of them live on less than $1.90 a day and depend on wheat as their main food.

Maize is the preferred staple food for 900 million poor consumers and the most important food crop in sub-Saharan Africa.

According to 2017 figures, maize is grown on 197 million hectares. Wheat covers 218 million hectares, an area larger than France, Germany, Italy, Spain and the UK combined. The total annual harvest of these two crops amounts to about 1.9 billion tons of grain.

A little girl eats a freshly-made roti while the women of her family prepare more, at her home in the village of Chapor, in the district of Dinajpur, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
A little girl eats a freshly-made roti while the women of her family prepare more, at her home in the village of Chapor, in the district of Dinajpur, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

2. Of the 300,000 known edible plant species, only 3 account for around 60% of our calories and proteins: maize, wheat and rice.

About 300,000 of the plant species on Earth could be eaten, but humans eat a mere 200 species globally.

Approximately 75% of the world’s food is generated from only 12 plants and 5 animal species. In fact, more than half of our plant-sourced protein and calories come from just three species: maize, rice and wheat.

Farmers Kanchimaya Pakhrin and her neighbor Phulmaya Lobshan weed rice seedling bed sown by machine in Purnabas, Kanchanpur, Nepal. (Photo: P. Lowe/CIMMYT)
Farmers Kanchimaya Pakhrin and her neighbor Phulmaya Lobshan weed rice seedling bed sown by machine in Purnabas, Kanchanpur, Nepal. (Photo: P. Lowe/CIMMYT)

3. CIMMYT manages humankind’s most diverse maize and wheat collections.

The organization’s germplasm bank, also known as a seed bank, is at the center of its crop-breeding research. This remarkable, living catalog of genetic diversity is comprised of over 28,000 unique seed collections of maize and 150,000 of wheat.

From its breeding programs, CIMMYT sends half a million seed packages to 800 partners in 100 countries each year. With researchers and farmers, the center also develops and promotes more productive and precise maize and wheat farming methods and tools that save money and resources such as soil, water, and fertilizer.

Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT's global headquarters in Texcoco, Mexico. Disaster-proof features of the bank include thick concrete walls and back-up power systems. (Photo: Xochiquetzal Fonseca/CIMMYT)
Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. Disaster-proof features of the bank include thick concrete walls and back-up power systems. (Photo: Xochiquetzal Fonseca/CIMMYT)

4. Maize and wheat are critical to a global food system makeover.

In 2010, agriculture accounted for about one-quarter of global greenhouse gas emissions.

High-yield and climate-resilient maize and wheat varieties, together with a more efficient use of resources, are a key component of the sustainable intensification of food production needed to transform the global food system.

Miguel Ku Balam (left), from Mexico's Quintana Roo state, cultivates the traditional Mesoamerican milpa system. "My family name Ku Balam means 'Jaguar God'. I come from the Mayan culture," he explains. "We the Mayans cultivate the milpa for subsistence. We don't do it as a business, but rather as part of our culture — something we inherited from our parents." (Photo: Peter Lowe/CIMMYT)
Miguel Ku Balam (left), from Mexico’s Quintana Roo state, cultivates the traditional Mesoamerican milpa system. “My family name Ku Balam means ‘Jaguar God’. I come from the Mayan culture,” he explains. “We the Mayans cultivate the milpa for subsistence. We don’t do it as a business, but rather as part of our culture — something we inherited from our parents.” (Photo: Peter Lowe/CIMMYT)

5. We must increase maize and wheat yields to keep feeding the world.

By the year 2050, there will be some 9.7 billion people living on Earth. To meet the growing demand from an increasing population and changing diets, maize yields must go up at least 18% and wheat yields 15% by 2030, despite hotter climates and more erratic precipitation.

Farmers walk through a wheat field in Lemo district, Ethiopia. (Photo: P. Lowe/CIMMYT)
Farmers walk through a wheat field in Lemo district, Ethiopia. (Photo: P. Lowe/CIMMYT)

6. Climate-smart farming allows higher yields with fewer greenhouse gas emissions.

Decades of research and application by scientists, extension workers, machinery specialists, and farmers have perfected practices that conserve soil and water resources, improve yields under hotter and dryer conditions, and reduce the greenhouse gas emissions and pollution associated with maize and wheat farming in Africa, Asia, and Latin America.

Kumbirai Chimbadzwa (left) and Lilian Chimbadzwa stand on their field growing green manure cover crops. (Photo: Shiela Chikulo/CIMMYT)
Kumbirai Chimbadzwa (left) and Lilian Chimbadzwa stand on their field growing green manure cover crops. (Photo: Shiela Chikulo/CIMMYT)

7. Wholegrain wheat is good for your health.

An exhaustive review of research on cereal grains and health has shown that eating whole grains, such as whole-wheat bread and other exceptional sources of dietary fiber, is beneficial for human health and associated with a reduced risk of cancer and other non-communicable diseases.

According to this study, consumption of whole grains is associated with a lower risk of coronary disease, diabetes, hypertension, obesity and overall mortality. Eating whole and refined grains is beneficial for brain health and associated with reduced risk for diverse types of cancer. Evidence also shows that, for the general population, gluten- or wheat-free diets are not inherently healthier and may actually put individuals at risk of dietary deficiencies.

Whole wheat bread. (Photo: Rebecca Siegel/Flickr)
Whole wheat bread. (Photo: Rebecca Siegel/Flickr)

8. Biofortified maize and wheat are combating “hidden hunger.”

Hidden hunger” is a lack of vitamins and minerals. More than 2 billion people worldwide are too poor to afford diverse diets and cannot obtain enough critical nutrients from their staple foods.

Too help address this, CIMMYT — along with HarvestPlus and partners in 18 countries — is promoting more than 60 maize and wheat varieties whose grain contains more of the essential micronutrients zinc and provitamin A. These biofortified varieties are essential in the fight against “hidden hunger.”

A 2015 study published in The Journal of Nutrition found that vitamin A-biofortified orange maize significantly improves visual functions in children, like night vision. (Photo: Libby Edwards/HarvestPlus)
A 2015 study published in The Journal of Nutrition found that vitamin A-biofortified orange maize significantly improves visual functions in children, like night vision. (Photo: Libby Edwards/HarvestPlus)

9. 53 million people are benefiting from drought-tolerant maize.

Drought-tolerant maize developed by CIMMYT and partners using conventional breeding provides at least 25% more grain than conventional varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average.

These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people.

One study shows that drought-tolerant maize varieties can provide farming families in Zimbabwe an extra 9 months of food at no additional cost.

10. Quality protein maize is helping reduce child malnutrition.

Developed by CIMMYT during the 1970s and 1980s and honored by the 2000 World Food Prize, quality protein maize features enhanced levels of lysine and tryptophan, essential amino acids that can help reduce malnutrition in children whose diets rely heavily on maize.

Two girls eat biofortified maize in Mukushi, Zambia. (Photo: Silke Seco/DFID)
Two girls eat biofortified maize in Mukushi, Zambia. (Photo: Silke Seco/DFID)

Happy Rural Women’s Day!

Women and girls play a crucial role in ensuring the sustainability of rural households and communities, improving rural livelihoods and overall wellbeing. Globally, one in three employed women works in agriculture

However, women farmers are less able to access land, credit, agricultural inputs and markets to receive the best prices for their crops. Structural barriers and discriminatory social norms also constrain rural women’s decision-making power and community participation.

This International Day of Rural Women, we honor women working in wheat and highlight ways to meet their needs. Click the thumbnails below to explore these stories of amazing women working in wheat.

UK Aid and Bill & Melinda Gates Foundation join to support research to protect crops from pests and disease and increase climate-resilience 

Visit between Bill Gates and DFID head Alok Sharma featured demonstration of MARPLE  mobile rust-testing  lab

The MARPLE mobile lab in Ethiopia. Credit: JIC

New £38 million funding from the Department for International Development (DFID, or UK aid), with additional funding from the Bill & Melinda Gates Foundation, will allow scientists to research cutting-edge technology to protect crops from pests and diseases and produce new varieties that are climate-resilient.

The joint funding, which was announced on Monday October 7, will directly contribute to securing global food security against pest and disease threats, climate change and natural resource scarcity. It will also reduce poverty in sub-Saharan Africa and South Asia by improving agricultural productivity of smallholder farmers.

The partnership will support  biotechnologies to enable crops to convert sunlight and carbon dioxide more efficiently to promote higher yields,  tools and methods to reduce the impact of root crop diseases in West Africa, and work  to harness naturally occurring biological nitrogen fixation processes to improve crops’ nitrogen uptake and increase yields while reducing fertilizer use among smallholder farmers in Africa.

At a visit to the Sainsbury Lab at the University of Cambridge on Monday, UK International Development Secretary Alok Sharma and Bill Gates participated in a demonstration of Mobile and Real-time PLant disEase) (MARPLE) Diagnostics, a mobile rust-testing lab developed by the John Innes Centre, the International Maize and Wheat Improvement Center (CIMMYT), and the Ethiopian Institute of Agricultural Research. The suitcase sized mobile lab can identify strains of wheat rust disease in just 48 hours – a process that normally takes months.

 Early last year DFID also announced funding for CGIAR to help scientists identify specific genes in crops related to improved nutrition, faster growth and disease and climate-resilience. Their work will help up to 100 million African farmers and their families lift themselves out of poverty.

The full press release by the Department for International Development and The Rt Hon Alok Sharma MP is available on the GOV.UK website.

Microsatellite data can help double impact of agricultural interventions

Study of smallholder wheat farmers in India shows data from small satellites can quantify and enhance yield gains

This story by Mandira Banerjee was originally posted in the University of Michigan Newsroom.

A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)

Data from microsatellites can be used to detect and double the impact of sustainable interventions in agriculture at large scales, according to a new study led by the University of Michigan (U-M).

By being able to detect the impact and target interventions to locations where they will lead to the greatest increase or yield gains, satellite data can help increase food production in a low-cost and sustainable way.

According to the team of researchers from U-M, the International Maize and Wheat Improvement Center (CIMMYT), and Stanford and Cornell universities, finding low cost ways to increase food production is critical given that feeding a growing population and increasing the yields of crops in a changing climate are some of the greatest challenges of the coming decades.

“Being able to use microsatellite data, to precisely target an intervention to the fields that would benefit the most at large scales will help us increase the efficacy of agricultural interventions,” said lead author Meha Jain, assistant professor at the U-M School for Environment and Sustainability.

Microsatellites are small, inexpensive, low-orbiting satellites that typically weigh 100 kilograms (220 pounds) or less.

“About 60-70% of total world food production comes from smallholders, and they have the largest field-level yield gaps,” said Balwinder Singh, senior researcher at CIMMYT.

To show that the low-cost microsatellite imagery can quantify and enhance yield gains, the researchers conducted their study in smallholder wheat fields in the Eastern Indo-Gangetic Plains in India.

They ran an experiment on 127 farms using a split-plot design over multiple years. In one half of the field, the farmers applied nitrogen fertilizer using hand broadcasting, the typical fertilizer spreading method in this region. In the other half of the field, the farmers applied fertilizer using a new and low-cost fertilizer spreader.

To measure the impact of the intervention, the researchers then collected the crop-cut measures of yield, where the crop is harvested and weighed in field, often considered the gold standard for measuring crop yields. They also mapped field and regional yields using microsatellite and Landsat satellite data.

Collecting the crop-cut measures of yield. Photo courtesy of: CIMMYT
Collecting the crop-cut measures of yield. Photo: CIMMYT

They found that without any increase in input, the spreader resulted in 4.5% yield gain across all fields, sites and years, closing about one-third of the existing yield gap. They also found that if they used microsatellite data to target the lowest yielding fields, they were able to double yield gains for the same intervention cost and effort.

“Being able to bring solutions to the farmers that will benefit most from them can greatly increase uptake and impact,” said David Lobell, professor of earth system science at Stanford University. “Too often, we’ve relied on blanket recommendations that only make sense for a small fraction of farmers. Hopefully, this study will generate more interest and investment in matching farmers to technologies that best suit their needs.”

The study also shows that the average profit from the gains was more than the amount of the spreader and 100% of the farmers were willing to pay for the technology again.

Women applying fertilizer via traditional method. Photo courtesy of: CIMMYT
Women applying fertilizer via traditional method. Photo: CIMMYT

Jain said that many researchers are working on finding ways to close yield gaps and increase the production of low-yielding regions.

“A tool like satellite data that is scalable and low cost and can be applied across regions to map and increase yields of crops at large scale,” she said.

Read the full study:
The impact of agricultural interventions can be doubled by using satellite data

The study is published in the October issue of Nature Sustainability. Other researchers include Amit Srivastava and Shishpal Poonia of the International Maize and Wheat Improvement Center in New Delhi; Preeti Rao and Jennifer Blesh of the U-M School of Environment and Sustainability; Andrew McDonald of Cornell; and George Azzari and David Lobell of Stanford. 

A fresh look at the genes behind grain weight in spring bread wheat

New study provides an extensive field-test validation of existing genetic markers for thousand grain weight; finds both surprises and promising results

To meet the demand for wheat from a rising and quickly urbanizing population, wheat yields in farmers’ fields must increase by an estimated 1.5% each year through 2030. 

Of all the factors that influence yield, grain weight is the trait that is most stable and heritable for use in breeding improved wheat varieties.  Breeders measure this by thousand grain weight (TGW).

Over the years, molecular scientists have made efforts to identify genes related to increased TGW, in order to speed up breeding through marker-assisted selection (MAS). Using MAS, breeders can select parents that contain genes related to the traits they are looking for, increasing the likelihood they will be passed on and incorporated in a new variety. 

Guillermo Garcia Barrios, a co-author of the study and student at Colegio de Postgraduados in Montecillo, Mexico with a PHERAstar machine used to validate genetic markers.
Photo: Marcia MacNeil/CIMMYT

There have been some limited successes in these efforts: in the past years, a few genes related to increased TGW have been cloned, and a set of genetic markers have been determined to be used for MAS. However, the effects of most of these candidate genes (CGs) have not yet been validated in diverse sets of wheat germplasm throughout the world that represent the full range of global wheat growing environments.

A group of wheat geneticists and molecular breeders from the International Maize and Wheat Improvement Center (CIMMYT) has recently conducted a thorough study to confirm the effects of the favorable alleles reported for these genes on TGW in CIMMYT wheat,   — and to identify new genetic determinants of this desired trait.

They found some good news and some bad.

First, the good news:  focusing on more than 4000 lines of CIMMYT wheat germplasm they found 15 haplotype blocks significantly associated with TGW.  Four haplotype blocks associated with TGW were also associated with grain yield – a grand prize for breeders, because in general the positive association of grain yield with TGW is less profound and sometimes even negative. However, of the 14 genes that had been previously reported to increase TGW, only one in CIMMYT’s 2015-2016 Elite Yield Trial and two in Wheat Associative Mapping Initiative panel were shown to have significant TGW associations.

The scientists also found that the alleles — pairs of genes on a chromosome that determine heredity – that were supposedly favorable to TGW actually decreased it.   These candidate genes also appear to vary in their TGW effects with genetic background and/or environment.

Thus, these findings also provide a foundation for more detailed investigations, opening the door for more studies on the genetic background dependence and environment sensitivity of the known candidate genes for TGW. 

Thousand Gain Weight is measured in this machine at CIMMYT’s administrative headquarters at El Batan, Mexico.
Photo: Marcia MacNeil/CIMMYT

 “Our findings indicate that it will be challenging to use MAS based on these existing markers across individual breeding programs,” said Deepmala Sehgal, CIMMYT wheat geneticist and the primary author of the study.

However, efforts to identify new genetic determinants of TGW were promising.  The authors’ study of CIMMYT germplasm found one locus on chromosome 6A that showed increases of up to 2.60 grams in TGW and up to 258 kilograms per hectare in grain yield.

This discovery expands opportunities for developing diagnostic markers to assist in multi-gene pyramiding – a process that can derive new and complementary allele combinations for enhanced wheat TGW and grain yield.

Most of all, the study highlights the strong need for better and more validation of the genes related to this and other traits, so that breeders can be sure they are using material that is confirmed to increase wheat grain weight and genetic yield.

“Our findings are very promising for future efforts to efficiently develop more productive wheat in both grain weight and grain yield,” said Sehgal. “This ultimately means more bread on household tables throughout the world.”

 “Validation of Candidate Gene-Based Markers and Identification of Novel Loci for Thousand-Grain Weight in Spring Bread Wheat” in Frontiers in Plant Science by Deepmala Sehgal, Suchismita Mondal, Carlos Guzman, Guillermo Garcia Barrios, Carolina Franco, Ravi Singh and Susanne Dreisigacker was supported by funding from the CGIAR Research Program on Wheat (WHEAT), the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID), and the US Agency for International Development (USAID) Feed the Future Innovation Lab for Applied Wheat Genomics.

Read the full article here: https://doi.org/10.3389/fpls.2019.01189


Wheat grains prepared for placement in TGW machine. Photo: Marcia MacNeil/CIMMYT