Posts Tagged ‘AGG’

Researchers in Zambia confirm: Wheat blast has made the intercontinental jump to Africa

Wheat blast in experimental plots (Photo: Batiseba Tembo, ZARI)

Wheat blast, a fast-acting and devastating fungal disease, has been reported for the first time on the African continent, according to a new article published by scientists from the Zambian Agricultural Research Institute (ZARI), the International Maize and Wheat Improvement Center (CIMMYT) and the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS) in the scientific journal PLoS One.

Symptoms of wheat blast first appeared in Zambia during the 2018 rainy season in experimental plots and small-scale farms in the Mpika district, Muchinga province.

Wheat blast poses a serious threat to rain-fed wheat production in Zambia and raises the alarm for surrounding regions and countries on the African continent with similar environmental conditions. Worldwide, 2.5 billion consumers depend on wheat as a staple food, and in recent years, several African countries have been actively working towards reducing dependence on wheat imports.

“This presents yet another challenging biotic constraint to rain-fed wheat production in Zambia,” said Batiseba Tembo, wheat breeder at ZARI and lead scientist on the study.

A difficult diagnosis

“The first occurrence of the disease was very distressing. This happened at the spike stage, and caused significant losses,” said Tembo. “Nothing of this nature has happened before in Zambia.”

Researchers were initially confused when symptoms of the disease in the Mpika fields were first reported. Zambia has unique agro-climatic conditions, particularly in the rainfed wheat production system, and diseases such as spot blotch and Fusarium head blight are common.

“The crop had silvery white spikes and a green canopy, resulting in shriveled grains or no grains at all…Within the span of 7 days, a whole field can be attacked,” said Tembo. Samples were collected and analyzed in the ZARI laboratory, and suspicions grew among researchers that this may be a new disease entirely.

Wheat blast in a farmer’s field in Mpika district, 2020 (Photo: Batiseba Tembo, ZARI)

A history of devastation

Wheat blast, caused by Magnaporthe oryzae pathotype Triticum (MoT), was initially discovered in Brazil in 1985, and within decades had affected around 3 million hectares of wheat in South America alone. The disease made its first intercontinental jump to Asia in 2016, causing a severe outbreak in Bangladesh, reducing yield on average by as much as 51% in the affected fields.

The disease has now become endemic to Bangladesh, and has potential to expand to similar warm, humid and wet environments in nearby India and Pakistan, as well as other regions of favorable disease conditions.

Wheat blast spreads through infected seeds and crop residues as well as by spores that can travel long distances in the air. The spread of blast within Zambia is indicated by both mechanisms of expansion.

Developing expert opinions

Tembo participated in the Basic Wheat Improvement Course at CIMMYT in Mexico, where she discussed the new disease with Pawan Singh, head of Wheat Pathology at CIMMYT.  Singh worked with Tembo to provide guidance and the molecular markers needed for the sample analysis in Zambia, and coordinated the analysis of the wheat disease samples at the USDA-ARS facility in Fort Detrick, Maryland.

All experiments confirmed the presence of Magnaporthe oryzae pathotype Triticum (MoT).

“This is a disaster which needs immediate attention,” said Tembo. “Otherwise, wheat blast has the potential to marginalize the growth of rain-fed wheat production in Zambia and may threaten wheat production in neighboring countries as well.”

Wheat blast observed in Mpika, Zambia  (Photo: Batiseba Tembo, ZARI)

A cause for innovation and collaboration

CIMMYT and the CGIAR Research Program on Wheat (WHEAT) are taking action on several fronts to combat wheat blast. Trainings, such as an international course led by the Bangladesh Wheat and Maize Research Institute (BWMRI) in collaboration with CIMMYT, WHEAT and others, invite international participants to gain new technical skills in blast diagnostics and treatment and understand different strategies being developed to mitigate the wheat blast threat. WHEAT scientists and partners are also working quickly to study genetic factors that increase resistance to the disease and develop early warning systems, among other research interventions. 

“A set of research outcomes, including the development of resistant varieties, identification of effective fungicides, agronomic measures, and new findings in the epidemiology of disease development will be helpful in mitigating wheat blast in Zambia,” said Singh.

Tembo concluded, “It is imperative that the regional and global scientific community join hands to determine effective measures to halt further spread of this worrisome disease in Zambia and beyond.”


Read the study:

Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia

Interview opportunities:

Pawan Kumar Singh, Senior Scientist and Head of Wheat Pathology (CIMMYT)

Batiseba Tembo, Wheat Breeder, Zambian Agricultural Research Institute (ZARI) batemfe@yahoo.com

For more information, or to arrange interviews, contact the media team:

Rodrigo Ordóñez, Communications Manager (CIMMYT) r.ordonez@cgiar.org


Acknowledgements

Financial support for this research was provided by the Zambia Agriculture Research Institute (ZARI), the CGIAR Research Program on Wheat (WHEAT), the Australian Centre for International Agricultural Research (ACIAR), and the US Department of Agriculture’s Agricultural Research Service (USDA-ARS). 

The Basic Wheat Training Program and Wheat Blast Training is made possible by support from investors including ACIAR, WHEAT, the Indian Council of Agricultural Research (ICAR), Krishi Gobeshona Foundation (KGF), the Swedish Research Council (SRC) and the United States Agency for International Development (USAID).

About CIMMYT

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit www.cimmyt.org.

Publication summary: Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields

A new quantitative genetics study makes a strong case for the yield testing strategies the International Maize and Wheat Improvement Center (CIMMYT) uses in its wheat breeding program.

Wheat fields at CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón. Photo: CIMMYT.

The process for breeding for grain yield in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at an experimental station in the desert environment of Ciudad Obregón, in Mexico’s Yaqui Valley. Because the conditions in Obregón are extremely favorable, CIMMYT wheat breeders are able to replicate growing environments all over the world, and test the yield potential and climate-resilience of wheat varieties for every major global wheat growing area. These replicated test areas in Obregón are known as selection environments (SEs).

This process has its roots in the innovative work of wheat breeder and Nobel Prize winner Norman Borlaug, more than 50 years ago.  Wheat scientists at CIMMYT, led by wheat breeder Philomin Juliana, wanted to see if it remained effective.

The scientists conducted a large quantitative genetics study comparing the grain yield performance of lines in the Obregón SEs with that of lines in target growing sites throughout the world. They based their comparison on data from two major wheat trials: the South Asia Bread Wheat Genomic Prediction Yield Trials in India, Pakistan and Bangladesh initiated by the U.S. Agency for International Development Feed the Future initiative, and the global testing environments of the Elite Spring Wheat Yield Trials.

The findings, published in Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields, in Frontiers in Plant Science, found that the Obregón yield testing process in different SEs is very efficient in developing high-yielding and resilient wheat lines for target sites.

The authors found higher average heritabilities, or trait variations due to genetic differences, for grain yield in the Obregón SEs than in the target sites (44.2 and 92.3% higher for the South Asia and global trials, respectively), indicating greater precision in the SE trials than those in the target sites.   They also observed significant genetic correlations between one or more SEs in Obregón and all five South Asian sites, as well as with the majority (65.1%) of the Elite Spring Wheat Yield Trial sites. Lastly, they found a high ratio of selection response by selecting for grain yield in the SEs of Obregón than directly in the target sites.

“The results of this study make it evident that the rigorous multi-year yield testing in Obregón environments has helped to develop wheat lines that have wide-adaptability across diverse geographical locations and resilience to environmental variations,” said Philomin Juliana, CIMMYT associate scientist and lead author of the article.

“This is particularly important for smallholder farmers in developing countries growing wheat on less than 2 hectares who cannot afford crop losses due to year-to-year environmental changes.”

In addition to these comparisons, the scientists conducted genomic prediction for grain yield in the target sites, based on the performance of the same lines in the SEs of Obregón. They found high year-to-year variations in grain yield predictabilities, highlighting the importance of multi-environment testing across time and space to stave off the environment-induced uncertainties in wheat yields.

“While our results demonstrate the challenges involved in genomic prediction of grain yield in future unknown environments, it also opens up new horizons for further exciting research on designing genomic selection-driven breeding for wheat grain yield,” said Juliana. 

This type of quantitative genetics analysis using multi-year and multi-site grain yield data is one of the first steps to assessing the effectiveness of CIMMYT’s current grain yield testing and making recommendations for improvement—a key objective of the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, which aims to accelerate the breeding progress by optimizing current breeding schemes.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future initiative; and several collaborating national partners who generated the grain yield data.

Read the full article here: https://doi.org/10.3389/fpls.2020.580136