Posts Tagged ‘ATA’

Scientists develop an early warning system that delivers wheat rust predictions directly to farmer’s phones

New research describes a revolutionary new early warning system that can predict and mitigate wheat rust diseases in Ethiopia.

One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)

Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.

Reported last week in Environmental Research Letters, the new early warning system, which is the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current rust situation and forecast wheat rust up to a week later.

The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).

Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can clearly be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023. However increasing yields has its challenges.

One major challenge to wheat production are wheat rusts. The fungal diseases can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.

The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time – a bit like the flu virus,” explained Dave Hodson, principal scientist CIMMYT and co-author of the research study.

In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, however the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.

The early warning system works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK). This is complemented by crowd sourced phone surveys using ATA’s 8028 Farmers’ Hotline. 

The University of Cambridge and the UK Met office then provide automated 7 day advanced forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.

Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)

Interestingly, the dispersal model was originally developed by the UK Met Office for volcanic eruptions and nuclear accidents to predict where particles would be dispersed in the air. The University of Cambridge and the UK Met Office then adapted the model to predict where wheat rust spores would be dispersed and to provide a 7-day forecast.

 “It’s world-class science from the UK being applied to real world problems,” said Hodson.

All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and the national authorities and the information also gets passed on to researchers and farmers.

“If there’s a high risk of wheat rust developing, farmers will get a targeted alert by SMS sent by ATA. This gives the farmer about three weeks to take action,” explained Hodson. The ATA Farmers’ Hotline now has over four million farmers and extension agents registered, enabling rapid information dissemination throughout Ethiopia.

“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.

Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)

The system puts Ethiopia at the forefront of early warning systems for wheat rust.

“Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson.

At the same time, CIMMYT and partners have been racing to develop wheat rust resistant varieties to allow farmers to avoid the diseases altogether. Recent estimates, based on DNA fingerprinting, indicate that these rust resistant varieties have been widely adopted throughout Ethiopia, and that varietal replacement is occurring frequently. 

The near real-time diagnostics tool MARPLE (Mobile And Real-time PLant disEase diagnostics) is also making huge leaps in wheat rust detection. Strains of yellow rust can be identified in just 48 hours using this suitcase sized kit – a process that normally takes months. The researchers recommended that this new technology be used in conjunction with the Early Warning System, to allow more accurate assessments and predictions of disease spread in Ethiopia.

Read the full article:

https://doi.org/10.1088/1748-9326/ab4034

Read the press release on CIMMYT.org. 

This study was made possible through the support provided by the BBSRC GCRF Foundation Awards for Global Agriculture and Food Systems Research, which brings top class UK science to developing countries, the Delivering Genetic Gains in Wheat (DGGW) Project managed by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID). The Government of Ethiopia also provided direct support into the early warning system.

A wheat self-sufficiency roadmap for Ethiopia’s future

Mechanization could boost Ethiopian wheat production and provide youth with new job opportunities. (Photo: Gerardo Mejía/CIMMYT)

This blog by Jérôme Bousset was originally posted on CIMMYT.org.

The Ethiopian government announced recently that the country should become wheat self-sufficient over the next four years. Why is boosting domestic wheat production important for this country in the Horn of Africa, and could wheat self-sufficiency be attained in the next four years? The Ethiopian Institute for Agricultural Research (EIAR), with the support of International Maize and Wheat Improvement Center (CIMMYT), gathered agriculture and food experts from the government, research and private sectors on November 23, 2018, to draw the first outlines of this new Ethiopian wheat initiative.

The low-tech domestic wheat farming and price support issue

Despite a record harvest of 4.6 million metric tons in 2017, Ethiopia imported 1.5 million tons of wheat the same year, costing US$600 million. Population growth, continuous economic growth and urbanization over the last decade has led to a rapid change in Ethiopian diets, and the wheat sector cannot keep up with the growing demand for pasta, dabo, ambasha and other Ethiopian breads.

The majority of Ethiopia’s 4.2 million wheat farmers cultivate this cereal on an average of 1.2-hectare holdings, with three quarters produced in Arsi, Bale and Shewa regions. Most prepare the land and sow with draft animal power equipment and few inputs, dependent on erratic rainfall without complementary irrigation. Yields have doubled over the last 15 years and reached 2.7 tons per hectare according to the latest agricultural statistics, but are still far from the yield potential.

According to data from the International Food Policy Research Institute (IFPRI), wheat is preferred by wealthier, urban families, who consume 33 percent more wheat than rural households. Ethiopia needs to rethink its wheat price support system, which does not incentivize farmers and benefits mostly the wealthier, urban consumers. Wheat price support subsidies could, for instance, target bakeries located in poor neighborhoods.

 

Ethiopia’s Minister of Agriculture and Natural Resources, Eyasu Abraha, welcomes conference participants. (Photo: Jérôme Bossuet/CIMMYT)

Where to start to boost wheat productivity?

Ethiopia, especially in the highlands, has an optimum environment to grow wheat. But to make significant gains, the wheat sector needs to identify what limiting factors to address first. The Wheat initiative, led by Ethiopia’s Agricultural Transformation Agency (ATA), has targeted 2,000 progressive farmers across 41 woredas (districts) between 2013 and 2018, to promote the use of improved and recommended inputs and better cropping techniques within their communities. A recent IFPRI impact study showed a 14 percent yield increase, almost enough to substitute wheat imports if scaled up across the country. It is, however, far from the doubling of yields expected initially. The study shows that innovations like row planting were not widely adopted because of the additional labor required.

Hans Braun, WHEAT CGIAR research program and CIMMYT’s Global Wheat Program director, believes Ethiopian farmers can achieve self-sufficiency if they have the right seeds, the right agronomy and the right policy support.

One priority is to increase support for wheat improvement research to make wheat farmers more resilient to new diseases and climate shocks. Drought and heat tolerance, rust resistance and high yields even in low-fertility soils are some of the factors sought by wheat farmers.

International collaboration in durum wheat breeding is urgently needed as the area under durum wheat is declining in Ethiopia due to climate change, diseases and farmers switching to more productive and resilient bread wheat varieties. Braun advises that Ethiopia set up a shuttle breeding program with CIMMYT in Mexico, as Kenya did for bread wheat, to develop high-yielding and stress-resistant varieties. Such a shuttle breeding program between Ethiopia and Mexico would quickly benefit Ethiopian durum wheat farmers, aiming at raising their yields similar to those of Mexican farmers in the state of Sonora, who harvest more than 7 tons per hectare under irrigation. This would require a policy reform to facilitate the exchange of durum germplasm between Ethiopia and Mexico, as it is not possible at the moment.

Ethiopia also needs to be equipped to respond quickly to emerging pests and diseases. Five years ago, a new stem rust (TKTTF, also called Digalu race) damaged more than 20,000 hectares of wheat in Arsi and Bale, as Digalu — the popular variety used by local farmers — was sensitive to this new strain. The MARPLE portable rust testing lab, a fast and cost-effective rust surveillance system, is now helping Ethiopian plant health authorities quickly identify new rust strains and take preventive actions to stop new outbreaks.

CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media during the conference. (Photo: Jérôme Bossuet/CIMMYT)

Invest in soil health, mechanization and gender

In addition to better access to improved seeds and recommended inputs, better agronomic practices are needed. Scaling the use of irrigation would certainly increase wheat yields, but experts warn not to dismiss adequate agronomic research — knowing the optimal water needs of the crop for each agroecological zone — and the underlying drainage system. Otherwise, farmers are at risk of losing their soils forever due to an accumulation of salt.

‘’2.5 billion tons of topsoil are lost forever every year due to erosion. A long-term plan to address soil erosion and low soil fertility should be a priority,” highlights Marco Quinones, adviser at ATA. For instance, large-scale lime application can solve the important issue of acid soils, where wheat does not perform well. But it requires several years before the soil can be reclaimed and visible yield effects can be seen.

Mechanization could also boost Ethiopian wheat production and provide youth with new job opportunities. Recent research showed smallholder farmers can benefit from six promising two-wheel tractor (2WT) technologies. Identifying the right business models and setting up adapted training programs and financial support will help the establishment of viable machinery service providers across the country.

Better gender equity will also contribute significantly to Ethiopia becoming self-sufficient in wheat production. Women farmers, especially female-headed households, do not have the same access to trainings, credit, inputs or opportunities to experiment with new techniques or seed varieties because of gender norms. Gender transformative methodologies, like community conversations, can help identify collective ways to address such inequalities, which cost over one percent of GDP every year.

‘’With one third better seeds, one third good agronomy and one third good policies, Ethiopia will be able to be wheat self-sufficient,” concluded Braun. A National Wheat Taskforce led by EIAR will start implementing a roadmap in the coming days, with the first effects expected for the next planting season in early 2019.

The consultative workshop “Wheat Self-Sufficiency in Ethiopia: Challenges and Opportunities” took place in Addis Ababa, Ethiopia, on November 23, 2018.