Posts Tagged ‘BGRI’

Wheat expert calls for global unity to avert future hunger crises

Adapted from original blog by Matt Hayes on the website of the Borlaug Global Rust Initiative (BGRI)

Maricelis Acevedo (left), associate director of science for Delivering Genetic Gains in Wheat and Ronnie Coffman (right), international professor of plant breeding and director of International Programs in the Cornell University College of Agriculture and Life Sciences. (Photo: L. McCandless/Cornell) 

A global alliance of countries and research institutions committed to sharing plant genetic material , including the International Maize and Wheat Improvement Center (CIMMYT) and Cornell University, has secured food access for billions of people, but a patchwork of legal restrictions threatens humanity’s ability to feed a growing global population.

That jeopardizes decades of hard-won food security gains, according to Ronnie Coffman, international professor of plant breeding and director of International Programs in the Cornell University College of Agriculture and Life Sciences (IP-CALS).

“Global food security depends on the free movement and open sharing of plant genetic resources,” Coffman said July 23 at the International Wheat Congress in Saskatoon, Saskatchewan. “Without a strong commitment to scientific exchange in support of global plant breeding efforts, we risk our ability to respond to current food crises and to protect future generations.”

Effective plant breeding programs depend on the exchange of seeds, pathogens, and plant genetic material – known as germplasm – between and among countries. Coordination among plant pathologists and breeders forms a symbiotic partnership as plant and disease specimens collected in countries around the world are sent to research institutions to be analyzed and tested. Those findings in turn inform the breeding of improved, location-specific crop varieties that are resistant to disease and adapted to increasingly unpredictable environmental conditions.

The Convention on Biological Diversity gives countries sovereign rights over their own biological resources. The multilateral treaty, signed in 1993, allows each state to draw up its own regulations. An update known as the Nagoya Protocol, ratified in 2014, has subjected plant breeders and the seed industry to increased legal wrangling. Some countries are particularly draconian in their enforcement, and without a universal legal framework, the uneven standards threaten to undermine scientific exchange, Coffman said.

He argued that current regulations bring international lawyers, accountants and bankers with little to no background in plant breeding onto the playing field of crop improvement to act as referees. The patchwork of laws and norms, which have grown increasingly complicated in recent years, hampers scientific advancement and ultimately harms the farmers who depend on improved crops.

Coffman called for an overhaul of international laws that regulate the sharing of plant genetic resources, and for plant scientists to advocate to protect the unimpeded exchange of material and knowledge.

“It takes an international community of scientists and genetic resources to fight pathogens like stem rust that do not respect international boundaries,” he said. “Stringent regulations and country-specific control are stifling the germplasm exchanges critical to agriculture and horticulture.”

The CGIAR system — and CIMMYT and ICARDA (International Center for Agricultural Research in the Dry Areas) in particular — are the conservators of enormous gene banks of germplasm. Those resources have been essential in improving many crops to fight biotic and abiotic stresses.

“Germplasm exchange and information sharing is paramount for global wheat improvement as they are the basis for much of the progress made,” said Hans Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat. “Going forward, we must protect open access and exchange because the value of germplasm resources in national and international gene banks can only be realized when they are shared and used.”

Hunger and malnutrition cause 9 million deaths globally per year, a number that could skyrocket without an international effort to respond in unison. Annual global losses to crops like wheat could be devastating in the absence of germplasm and effective breeding programs.

Since 2008, the Cornell-led Borlaug Global Rust Initiative has spearheaded efforts to combat threats to global wheat production. There are now approximately 215 million hectares of wheat under cultivation worldwide, most of it genetically susceptible to one or more races of newly identified stem rust and yellow rust pathogens. Highly virulent races of rust pathogens can easily reduce yields by 10% or more. The 1953 rust epidemic in North America resulted in average yield losses of 40% across U.S. and Canadian spring wheat growing areas.  

As one part of its efforts to reduce the world’s vulnerability to wheat diseases, the Cornell-led Delivering Genetic Gain in Wheat (DGGW) project – funded by the Bill & Melinda Gates Foundation and UK Aid from the British people – collects samples of plant pathogens such as stem rust and yellow rust from 40 countries and analyzes them in biosafety testing labs in Minnesota, Denmark, Canada, Turkey, Ethiopia, Kenya and India.

Exchanging germplasm has allowed the DGGW project to take multiple approaches to achieving long-lasting resilience, from conventional breeding, to marker assisted selection and high-end basic science explorations. DGGW and its forerunner, the Durable Rust Resistance in Wheat project, have, since 2008, released more than 169 wheat varieties with increased yields and improved disease resistance in 11 at-risk countries, helping to improve smallholder farmers’ food security and livelihoods.

The DGGW relies on exchanges of germplasm and rust samples across international borders, and the project has encountered increased regulation in recent years, said Maricelis Acevedo, associate director of science for the DGGW and adjunct associate professor of plant pathology at Cornell.

“It takes an international community of scientists and genetic resources to fight pathogens like stem rust that know no international boundaries,” Acevedo said. “We must continue to protect — and use — those resources in our quest for global food security.”

Francisco Barro, developer of gluten-free wheat, to deliver keynote address at BGRI Technical Workshop

By Samantha Hautea
Thursday, March 29, 2018
(Courtesy of the Borlaug Global Rust Initiative)

A few years ago, the idea of gluten-free wheat was more theoretical than real. But last year, Francisco Barro, a plant scientist at the Institute for Sustainable Agriculture in Spain, made headlines with a gene editing technique called CRISPR-Cas9 that significantly reduced the amount of reaction-causing proteins in wheat.

Barro led the team that conducted the research leading to this remarkable achievement and was one of the authors of a paper that described engineering wheat using CRISPR.

Francisco Barro, photo provided.

As the keynote speaker for the 2018 Borlaug Global Rust Initiative Technical Workshop, in Morocco, April 14-17, Barro will talk about CRISPR-Cas9 technology, gluten-free wheat and the future of plant breeding.

“I am interested in the development of wheat lines suitable for celiac people, and obviously I am excited to carry out this project. For me, the elimination of the toxic gliadins and the maintenance of the bread making quality of wheat is the most exciting,” Barro said. “However, I realize that one of the most important targets for CRISPR is the resistance to biotic and abiotic stresses, in particular drought and salinity resistances, since this will allow sowing in soils not currently suitable for wheat cultivation, especially in developing countries.”

Born in Córdoba, Spain, Barro received his PhD in Biology at the University of Córdoba. After a postdoc of two-and-a-half years at Rothamsted Research in the UK, where he first worked on the genetic engineering of cereals, he returned to Spain to begin the research to obtain wheat lines for celiacs.

“The idea of obtaining wheat lines safe for celiac people came in 2002 when I was preparing a project to over-express gliadin genes in wheat, with the aim to extend wheat functionality,” Barro explained. “I changed the target of my research when I realized that people suffering celiac disease do not need more gliadins but the opposite instead. Therefore, I reorganized the project towards the elimination of gliadins by RNAi, which was a cutting edge technology by that time. We succeeded several years later with the development of wheat lines containing until 95 percent less gliadins than the standard wheat.”

Gliadins, a class of proteins found in gluten, are what cause immune reactions in people with celiac disease. The only known treatment for the disease is a strict gluten-free diet. While Barro’s research has not eliminated gliadins entirely from wheat, he is optimistic.

“More recently, we have applied the new gene editing technologies to introduce mutations in the alpha-gliadin regions of bread and durum wheat. The main advantage of these editing technologies is that the product does not contain transgenes and, therefore general consumers could more readily accept it. “

Barro said he was not surprised that there was such interest in his research from the popular press and the wheat science community.

“First, this a very hot topic, a very nice example of using biotechnology to help people. Everyone knows celiac people, and celiacs know that bread is a very difficult product, that gluten-free bread is not as good as other gluten-free products. I think that for a celiac to enjoy good bread, made of wheat, with the taste of wheat, the aroma of wheat, it would be something really amazing, and we are getting closer. Second, most papers report the use of gene editing technologies being limited to only a few genes. In our work, we report the simultaneous mutation of at least 35 different genes in bread wheat, and this is something really outstanding.”

One of the challenges with current gluten-free products is that they have a different flavor and texture. Barro’s team has collaborated with a baker in Spain to use their low-gliadin RNAi line of wheat to create bread with flavor and aroma indistinguishable from standard wheat bread. Celiac patients have been able to eat this bread and report on its quality.

Barro said his team has already designed new sgRNAs to target other gliadin groups in wheat, like gamma and omega gliadins. A number of companies have expressed interest in the technology and in using the material as it is or incorporating it into their breeding programs.

Is CRISPR the future of plant breeding?

From Barro’s perspective, it is unlikely that gene editing technologies will completely replace conventional plant breeding methods.

“Targets for CRISPR will be the same as those for classical breeding technologies, i.e., technologies are changing but the problems are the same: increasing yield, biotic and abiotic stresses resistant, better quality, etc. CRISPR technology provides breeders with more precise control of some features, but CRISPR technology will not replace classical breeding — they will work together.”

Speaking about future applications of CRISPR and other genome editing technologies in agriculture, Barro added that it is likely we will see some trends in applications.

“In the short-term, introducing mutations in key genes will be the most wide application of this technology, where the aim is to kill DNA, avoiding the expression of toxic proteins, or introducing mutations in genes to make crops more resistant to diseases, or genes which limit crop adaptability, and to develop androsterile plants for hybrid production. In the medium-term, CRISPR technology will be useful not for killing DNA but for real DNA editing: for gene replacement, or to modify specific amino acids and provide new functionalities to existent genes, and for transcriptional activation of repression of genes, modulating their expression levels.”

The 2018 BGRI Technical Workshop will be held in Marrakech, Morocco, from 14-17 April 2018. Click here to view the full program for the workshop at the BGRI website.

Breakthrough in the battle against Ug99

Melania Figuroa and Peter Dodds
Thursday, January 25, 2018 (Posted on the Borlaug Global Rust Initiative web page)

Wheat stem rust at important flag leaf stage. Photo by Robert Park

A significant breakthrough in combatting wheat stem rust disease caused by the fungus Puccinia graminis f. sp. tritici was recently achieved through the combined work of an international collaborative team, showing the power of cooperative research approaches.

The emergence of the Ug99 race of stem rust in Africa and the Middle East together with the appearance of new strains in Europe catalyzed a major effort to identify new sources of stem rust resistance and breed these genes into wheat lines. However, the continued emergence of stem rust variants that overcome new resistance genes, now demands an increased focus on pathogen evolution and virulence mechanisms.

Numerous stem rust resistance (Sr) genes are known and in recent years several of these have been cloned and used to develop so-called ‘perfect’ markers to allow more rapid and accurate breeding. These genes typically encode immune receptors that recognize specific protein components of the fungal pathogen to trigger resistance. However, the molecules recognized by these Sr genes have been unknown until now, hampering our understanding of how new strains of P. graminis f. sp. tritici evolve to escape plant recognition.

New insight into this evolution came from the identification of the protein, AvrSr50, which is recognized by the wheat Sr50 resistance gene, by  an international collaboration led by Dr. Peter Dodds (CSIRO Food and Agriculture and University of Minnesota Adjunct Professor) and Professor Robert Park (University of Sydney and Director of theAustralian Cereal Rust Control Program) and involving teams in the UK and the US.

Click here to read the full article.