Posts Tagged ‘Bill & Melinda Gates Foundation’

Publication summary: Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields

A new quantitative genetics study makes a strong case for the yield testing strategies the International Maize and Wheat Improvement Center (CIMMYT) uses in its wheat breeding program.

Wheat fields at CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón. Photo: CIMMYT.

The process for breeding for grain yield in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at an experimental station in the desert environment of Ciudad Obregón, in Mexico’s Yaqui Valley. Because the conditions in Obregón are extremely favorable, CIMMYT wheat breeders are able to replicate growing environments all over the world, and test the yield potential and climate-resilience of wheat varieties for every major global wheat growing area. These replicated test areas in Obregón are known as selection environments (SEs).

This process has its roots in the innovative work of wheat breeder and Nobel Prize winner Norman Borlaug, more than 50 years ago.  Wheat scientists at CIMMYT, led by wheat breeder Philomin Juliana, wanted to see if it remained effective.

The scientists conducted a large quantitative genetics study comparing the grain yield performance of lines in the Obregón SEs with that of lines in target growing sites throughout the world. They based their comparison on data from two major wheat trials: the South Asia Bread Wheat Genomic Prediction Yield Trials in India, Pakistan and Bangladesh initiated by the U.S. Agency for International Development Feed the Future initiative, and the global testing environments of the Elite Spring Wheat Yield Trials.

The findings, published in Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields, in Frontiers in Plant Science, found that the Obregón yield testing process in different SEs is very efficient in developing high-yielding and resilient wheat lines for target sites.

The authors found higher average heritabilities, or trait variations due to genetic differences, for grain yield in the Obregón SEs than in the target sites (44.2 and 92.3% higher for the South Asia and global trials, respectively), indicating greater precision in the SE trials than those in the target sites.   They also observed significant genetic correlations between one or more SEs in Obregón and all five South Asian sites, as well as with the majority (65.1%) of the Elite Spring Wheat Yield Trial sites. Lastly, they found a high ratio of selection response by selecting for grain yield in the SEs of Obregón than directly in the target sites.

“The results of this study make it evident that the rigorous multi-year yield testing in Obregón environments has helped to develop wheat lines that have wide-adaptability across diverse geographical locations and resilience to environmental variations,” said Philomin Juliana, CIMMYT associate scientist and lead author of the article.

“This is particularly important for smallholder farmers in developing countries growing wheat on less than 2 hectares who cannot afford crop losses due to year-to-year environmental changes.”

In addition to these comparisons, the scientists conducted genomic prediction for grain yield in the target sites, based on the performance of the same lines in the SEs of Obregón. They found high year-to-year variations in grain yield predictabilities, highlighting the importance of multi-environment testing across time and space to stave off the environment-induced uncertainties in wheat yields.

“While our results demonstrate the challenges involved in genomic prediction of grain yield in future unknown environments, it also opens up new horizons for further exciting research on designing genomic selection-driven breeding for wheat grain yield,” said Juliana. 

This type of quantitative genetics analysis using multi-year and multi-site grain yield data is one of the first steps to assessing the effectiveness of CIMMYT’s current grain yield testing and making recommendations for improvement—a key objective of the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, which aims to accelerate the breeding progress by optimizing current breeding schemes.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future initiative; and several collaborating national partners who generated the grain yield data.

Read the full article here: https://doi.org/10.3389/fpls.2020.580136

Q&A: Wheat breeding experts help CIMMYT reach ambitious improvement goals

“This will make us one of the world’s best breeding programs,” says visiting scientist

Wheat seeds shoot out of harvester at CIMMYT’s Centro Experimental Norman E. Borlaug in Obregon, Mexico. Photo: Peter Lowe/CIMMYT

A select group of plant breeders, quantitative geneticists, pathologists, statisticians, mathematicians, and other scientific and technical experts from the public and private wheat breeding sectors spent three days at the headquarters of the International Maize and Wheat Improvement Center (CIMMYT) last week debating ways to improve CIMMYT’s wheat breeding program.

The group, who traveled from as far as away as Canada, India and China, challenged each other to come up with a set of recommendations to move CIMMYT’s wheat breeding program to two ambitious goals: to increase the rate of genetic gain in wheat yields and to mainstream high zinc levels into all new improved wheat lines.

We caught up with a few of these visiting scientists to understand why they came and how they saw their role in this renewed push for food security through wheat research.

Gary Atlin, Senior Program Officer, Bill & Melinda Gates Foundation

Q: There is a sense of urgency in this meeting. Why is it important to raise genetic gain – and nutrition — in wheat now?

A: The urgency is generally around increasing the effectiveness of breeding in the face of climate change and intensifying cropping systems in the target countries that we serve.  There is also an increasing recognition that micronutrient deficiencies are a major health problem in many areas where a lot of protein and calories come from wheat.

Donors are looking at breeding investments and realizing that although programs like CIMMYT are extremely effective they could probably be more efficient and effective.

It’s an ambitious goal: to increase the rate of genetic gain — and move the needle on zinc — within the context of an agronomic breeding program that’s already very effective. This will make us one of the world’s best breeding programs.

Q: Do we have what it takes?

A: Absolutely. The engine already works very well. But there are lots of new tools, new ways of organizing breeding being tried out in the public and private sectors that we can use. CIMMYT has an excellent skill set here and very experienced people. It’s all there — but it’s a complex problem.

Q: How do you see the role of wheat research in the move to transform the many CGIAR centers into OneCGIAR?

A: Well, along with rice, wheat is among the top two in terms of area and contribution to total calories worldwide. So OneCGIAR will have a wheat research program as the core of its wheat offering. One CGIAR will hopefully do away with dysfunctional separations and boundaries between programs so it should be easier and we won’t have to duplicate programmatic leadership and administrative structures.

Wheat will be just as important. The idea of OneCGIAR is to provide a better platform for the research programs. I’m very optimistic that it’s going to help.

Valentin Wimmer, Head of Cereals Breeding Technologies, KWS SAAT SE & Co. KGaA, Germany

Q: Why did you decide to come help CIMMYT’s wheat breeding program?

A: I would have regretted it if I hadn’t come. The exchange, the process of disclosing a program, having an in-depth discussion and coming up with a proposal  — that is something that rarely happens.

I was also interested because I thought I could also learn. There are many other smart people here. It’s a give and take.

Q: What is your reaction to CIMMYT’s wheat breeding plan? Do you think we can do it?

A: I think it’s very ambitious but I was positively surprised by the output.  Given the limited amount of time, we really made good progress.

Q: How do you see your role in this consultation and in the future with this effort?

A:  My background is in breeding technologies, statistical modeling and simulation and breeding scheme modeling—all areas of discussion here.  I also have expertise in a corporate environment – so I can provide input on logistics and time constraints.

 I will be available to offer additional feedback and answer questions – or if the program wants to send someone to us for training- I could imagine that, too.

Curtis Pozniak, Professor and Ministry of Agriculture Strategic Research Program Chair in Durum and High-Yield Wheat Breeding and Genetics, University of Saskatchewan, Canada

Q: How has your experience been at this workshop?

A:  I work closely with the CIMMYT wheat breeders in exchanging germplasm, particularly on the durum wheat side.  To be able to visit CIMMYT and help move the program forward was quite an honor for me, particularly given the excellent relationships I’ve had with CIMMYT scientists. It’s been a fantastic experience.

Q: How do you see your role as a research partner and your involvement as this effort moves forward?

A: It’s clear that CIMMYT has extensive breeding capability capacity, structure, people, and know-how. They’re doing an excellent job. Our role at this workshop is to review how decisions are made and think about how CIMMYT wheat programs  apply new technologies to improve the rate of genetic gain in wheat. It is nice to see that the program is starting to embrace a data driven selection system.

One of the things we were talking about here is the importance of germplasm exchange, and how to fit that into not only the CIMMYT program but the international programs both in developed and developing countries.   I use CIMMYT germplasm in my own crossing program, and we exchange genetic mapping populations and genotypic information amongst our programs to make better sense of the data in the context of our own germplasm, relative to our specific environments. I am happy to give back.

Kudos to CIMMYT for reaching out and really doing an excellent job presenting their program and asking a whole range of experts to provide feedback on their wheat program and listen to our collective experiences on how we might improve not only the breeding program at CIMMYT, but national programs as well.  I don’t see this as a “one-off” but the first step to building a much stronger relationship, and something that will continue.

 “Change can be painful and can take us out of our comfort zone,” said CIMMYT Director of Genetic Resources Kevin Pixley, who co-moderated the workshop, “but a constant pursuit of improvement is what differentiates exceptional from good, and the challenges facing wheat farmers in coming decades will require the best that science can offer.”

Wrapping up the technical expert meeting, Gary Atlin put these efforts into perspective. “Genetic gains mean income for farmers,” he reminded the group. “That’s what drives me, and I know that’s what drives you too.”


Fellowship for women agricultural researchers in MENA sets future leaders on the path to success

The first cohort of Fellows in the Arab Women Leaders in Agriculture fellowship program.

In May of this year, 22 women from the Middle East and North Africa (MENA) region won a competitive fellowship in agricultural research, sponsored by the International Center for Biosaline Agriculture (ICBA), the Bill & Melinda Gates Foundation, the Islamic Development Bank (IsDB) and the  CGIAR Research Program on Wheat (WHEAT).

 The Arab Women Leaders in Agriculture (Awla) fellowship program, the first of its kind, is designed to develop a cadre of aspiring Arab women researchers who are equipped with the knowledge and skills to make a positive difference in agriculture sustainability, in their countries in particular and the Arab region as a whole.

The cornerstones of the Awla fellowship are team-based capstone projects designed to put the skills, tools and knowledge gained during the program to practical use. Diverse teams of Fellows from varying nationalities and backgrounds are expected to produce a solution to a key challenge to women in agriculture, guided by the mentors, the Awla Steering Committee and selected stakeholders nominated by the Fellows. Fellows can choose from a variety of interdisciplinary topics as well as agriculture specific, as long as their topic of choice has a convincing value proposition. At the end of the fellowship program, the teams will present their capstone projects to relevant stakeholders to seek funding.

The first cohort of Awla Fellows — which includes researchers from Algeria, Egypt, Jordan, Lebanon, Morocco and Tunisia – met from June 30 to July 7 in Tunisia for an introductory workshop to kick off their 10-month fellowship. WHEAT is funding two students in this cohort.

The Awla Fellows are a highly successful group of agricultural engineers, professors, wheat breeders and working researchers in agronomy, biotechnology, soil sciences and other technical agricultural fields.  The orientation workshop gave them the opportunity to get to know each other and their selected mentors, participate in trainings designed to build their leadership and project management capacity, and gain an understanding of the online coursework and assignments that will make up their training.

Leadership and guidance
The workshop began with 6 days of training in positive psychology applications in leadership – a course that covered how to integrate concepts of resilience, creativity, finding meaning and purpose and more into both their interpersonal relationships and their organization management.

Next came a 3-day course to introduce the concepts of design thinking, a process for creative problem solving that encourages organizations to focus on the human needs of the people for whom they are creating. The Awla Fellows were encouraged to use these concepts to brainstorm notes for their team-based capstone projects, which involved addressing a key challenge faced by women in agriculture.

Mentorships
An important objective of the Tunisia workshop was to clarify roles and set expectations for the Fellows’ relationships with their mentors. Awla mentors, nearly all of whom joined their mentees in Tunisia, ranged from laboratory directors, lead professors, and government officials.  A 2-day mentoring orientation helped to establish the semi-structured mentoring relationship, whereby mentors will share their knowledge, skills and experience with the Fellows to help their development during the course of the Awla program and beyond.

Coursework
The Awla Fellowship consists of a series of online courses ranging from project planning to science writing, research methods and data management. Awla administrators ensured each Fellow had full access to the customized set of courses.  Senior Fellows who complete the Awla program will have access to more than 3000 other courses across domains.

Support
Throughout the program, Awla administrators will continue to support the Fellows both virtually, by following up their on-line courses and capstone projects and seeking funding for conference participation, and in person during an upcoming workshop in Tunis from October 28 to November 4, 2019.  A final closing workshop, hosted by the International Center for Biosaline Agriculture in the United Arab Emirates, will take place in February 2020.  The Awla funders will then plan another cycle of the program, with a new cohort of Fellows.

The MENA region faces critical and urgent agricultural challenges related to improved food security and nutrition, a better research and development landscape, and economic and social benefits of a narrowed gender gap that will require both innovative and inclusive solutions.  With this strong foundation, the Awla Fellows are poised to become leaders that can take on these challenges.

###

The Arab Women Leaders in Agriculture fellowship is hosted by the International Center for Biosaline Agriculture (ICBA) and funded by the Bill & Melinda Gates Foundation, The Islamic Development Bank (IsDB) Group and the CGIAR Research Program on Wheat

UK Aid and Bill & Melinda Gates Foundation join to support research to protect crops from pests and disease and increase climate-resilience 

Visit between Bill Gates and DFID head Alok Sharma featured demonstration of MARPLE  mobile rust-testing  lab

The MARPLE mobile lab in Ethiopia. Credit: JIC

New £38 million funding from the Department for International Development (DFID, or UK aid), with additional funding from the Bill & Melinda Gates Foundation, will allow scientists to research cutting-edge technology to protect crops from pests and diseases and produce new varieties that are climate-resilient.

The joint funding, which was announced on Monday October 7, will directly contribute to securing global food security against pest and disease threats, climate change and natural resource scarcity. It will also reduce poverty in sub-Saharan Africa and South Asia by improving agricultural productivity of smallholder farmers.

The partnership will support  biotechnologies to enable crops to convert sunlight and carbon dioxide more efficiently to promote higher yields,  tools and methods to reduce the impact of root crop diseases in West Africa, and work  to harness naturally occurring biological nitrogen fixation processes to improve crops’ nitrogen uptake and increase yields while reducing fertilizer use among smallholder farmers in Africa.

At a visit to the Sainsbury Lab at the University of Cambridge on Monday, UK International Development Secretary Alok Sharma and Bill Gates participated in a demonstration of Mobile and Real-time PLant disEase) (MARPLE) Diagnostics, a mobile rust-testing lab developed by the John Innes Centre, the International Maize and Wheat Improvement Center (CIMMYT), and the Ethiopian Institute of Agricultural Research. The suitcase sized mobile lab can identify strains of wheat rust disease in just 48 hours – a process that normally takes months.

 Early last year DFID also announced funding for CGIAR to help scientists identify specific genes in crops related to improved nutrition, faster growth and disease and climate-resilience. Their work will help up to 100 million African farmers and their families lift themselves out of poverty.

The full press release by the Department for International Development and The Rt Hon Alok Sharma MP is available on the GOV.UK website.

Q&A with Mandeep Randhawa, CIMMYT wheat rust expert at Njoro Platform, Kenya

Photo Credit: Chris Knight, Cornell University

As a part of a global network to combat the Ug99 race of wheat stem rust, the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Cornell University and the Kenya Agricultural and Livestock Research Organization (KALRO), established a stem rust phenotyping platform in Njoro, Kenya in 2008.

Under the aegis of the Durable Rust Resistance in Wheat (DRRW) project and with support from the Bill & Melinda Gates Foundation, the platform evaluates the resistance of germplasm against Ug99 from 25 to 30 countries around the world.

Mandeep Randhawa — a wheat breeder and geneticist — joined CIMMYT’s Global Wheat Program in 2015 and took responsibility as manager of the Njoro wheat stem rust phenotyping platform in 2017.

In the following Q&A —  based on an interview with Chris Knight of Cornell University’s Borlaug Global Rust Initiative — Mandeep talks about his role and his thoughts on global wheat production and the fight against Ug99.

Q: Could you describe the significance of the work that goes on here to global wheat production and global food security with respect to wheat?

A: CIMMYT has a global mandate to serve developing countries in terms of developing new wheat and maize varieties. Under the CIMMYT-Kenya shuttle breeding program, seed of about 2000 segregated populations are imported and evaluated against stem rust races for two seasons in Njoro, and spikes from resistant plants of each cross are selected, harvested and threshed together. Then, seed from each cross is shipped back to Obregon [the Campo Experimental Norman E. Borlaug in Obregon, Mexico].

In Obregon, CIMMYT selects for resistance against leaf rust and stem rust diseases using the local rust races. Plants are selected in Obregon and about 90,000 to 100,000 plants harvested. After grain selection, 40,000 to 50,000 small plots are grown in other testing sites in Mexico where another round of selections are made. About 10,000 lines undergo first year yield trials in Obregon, and are tested for stem rust resistance here in Kenya for two seasons.

After combining data from the various test sites with the stem rust score from Kenya, the top performing lines (about 10%) undergo second year yield tests in Obregon.

These high-yielding lines are distributed internationally to our national partners, and are available to the public for use in breeding program for release as potential varieties.  

I believe that it is helpful to develop new varieties with higher yield to benefit mankind.

Q: Twenty years have now passed since Ug99 was first identified. One way to frame the story is how high the stakes were at the time. If we didn’t have this screening platform, if we hadn’t come together around trying to fight Ug99, what would have happened to global wheat production?

This is a good question. We have done so much for the last 10 years using this platform. We are developing high-yielding lines that are rust resistant, which are benefiting not only the world’s wheat community, but will eventually benefit the farmer and help raise global wheat production. If we had not acted at the right time, we would not be able to know the effect of these emerging races and how they’re evolving and affecting the world of our wheat. If we didn’t have proper surveillance on rusts, we wouldn’t be able to know what types of stem rust races are evolving.

If we did not have this platform, we would see wheat varieties simply killed by stem rust and we wouldn’t have enough resources to tackle it today.

Now we are at a place where several Ug99-resistant genes have been identified – they are very useful in the breeding programs.

There are two types of resistance. One is race specific resistance and another is race non-specific resistance. If you deploy race specific resistance, there is always the fear that these genes will be rendered ineffective because of the evolution of new races. It has been seen in East Africa with the wheat varieties Robin and Digelu that were rendered susceptible with the emergence of virulent strains of wheat stem rust pathogen. To avoid sudden breakdown of resistance, we at CIMMYT are working to identify, characterize and combine race non-specific type of rust resistance sources. Race non-specific resistance is considered more durable. At least four to five genes need to be combined in one cultivar to have a stronger immunity or resistance.

Q: Let’s talk a little bit about the future. We’ve made a lot of progress, we’ve developed this platform, we brought a community of more than 25 countries together to work on this problem. What do we need to do in the next 20 years?

Stem rust was considered a disease prevalent in warmer environments, but now we can see that races have also evolved in Europe, which means that stem rust is adapting to cooler climates. In the near future, or in the next 20 years, I think we have to continue testing wheat germplasm at this platform to develop high-yielding rust resistant varieties that can be released in different countries, which will be helpful to the global wheat community. And globally speaking, it will be helpful to increase our wheat production.

Q: That’s really exciting. Thinking about the number of wheat lines that are screened here, how many wheat lines are screened here every year, and how many countries do we serve?

When the platform initially formed, my predecessors struggled a lot. It was very hard to plant wheat here. Now we have progressed in the last ten years to reach a level that we can test about 25,000 lines in one season. We have two seasons here in Kenya: one is the off-season starting from January to April/May, and then the main season starts from June and goes to the end of October. During these two seasons, about 50,000 lines per year can be tested at this platform. About 25 to 30 countries are benefitting by testing their germplasm here.

Q: We not only need to cultivate the wheat, we need to cultivate the next generation of scientists. So can you talk about the trainings that are run here on a regular basis? People from all over the world come here to learn about rust pathology and wheat breeding, right?

In the last 10 years, we have been implementing capacity building where young scientists are coming to attend a stem rust training course every year, in September and October. Every year we train about 20 to 30 young scientists from national programs in East Africa, South Asia, the Middle East and South America. Every year Dr. Bob McIntosh — he’s a living legend, an encyclopedia of rust resistance – comes over to Njoro to give field demonstrations, teach new technologies, how we can work together, how you can evaluate rust in the field and in the greenhouse. And in addition, a team of scientists from CIMMYT, ICARDA and Cornell University have been coming to provide lectures on genetics and breeding for rust resistance and rust surveys every year for the last 10 years. We have trained more than 200 scientists.

Q: Do you have a final word of motivation for all of the collaborators around the world who are supporting and helping together to achieve these goals?

We have seen in the last two decades of work here that rust never sleeps, as Dr. Norman Borlaug said. It continues to evolve, and the different races keep on moving around and tend to survive on wheat without any resistance. Not only in east Africa: you can see the stem rust is already in Europe – in Sicily, in Germany and the UK. And there is a risk to South Asia as well, as the wind is blowing toward the bread wheat producing area there. If stem rust reaches there, it can cause a huge loss to global wheat production.

So, I request that countries’ national agriculture research systems contact us: me or Ruth Wanyera, the wheat rust pathologist in KALRO  if they want to test or evaluate their material at this platform. We are more than happy to evaluate the germplasm from any country.

Mandeep can be reached at m.randhawa@cgiar.org

Arab Women Leaders in Agriculture (Awla) fellowship program opens call for applications

This press release was originally posted on the website of the International Center for Biosaline Agriculture (ICBA). The CGIAR Research Program on Wheat is a program sponsor.

  • Awla fellowship program aims to help women researchers in agriculture secure leadership roles by encouraging gender-responsive working cultures and creating platforms that showcase their intellect, capability and contribution.
  • Applications can be made through www.awlafellowships.org and close on 15th April 2019.
Photo Credit: International Center for Biosaline Agriculture

Dubai, UAE, March 7, 2019 – On the eve of International Women’s Day, the International Center for Biosaline Agriculture (ICBA), the Bill & Melinda Gates Foundation, the Islamic Development Bank (IsDB) and CGIAR Research Program on Wheat launched a call for applications for the first edition of the Arab Women Leaders in Agriculture (Awla) fellowship program for women researchers in the Middle East and North Africa (MENA) region.

The Awla fellowship program aims to help women researchers in agriculture to secure leadership roles by encouraging gender-responsive working cultures and creating platforms to showcase their intellect, capability and contribution. Awla’s first cohort will help establish the first R&D forum in the MENA to address pressing regional agricultural challenges and take part in the region’s first networking platform for women researchers across agricultural disciplines.

The call for applications will lead to the selection of a group of 20 to 30 researchers from Algeria, Egypt, Jordan, Lebanon, Morocco, Palestine and Tunisia. The program will be delivered from two regional hubs – Jordan and Tunisia – over a 10-month period, starting from 1st June 2019.

Dr. Ismahane Elouafi, Director General of ICBA, said: “Women-led contributions to agriculture, both on the farm and in the lab, are essential components of global food security. And our program is designed to address structural causes of gender inequality and encourage women to take an active role in future scientific developments and innovation. Tapping women’s knowledge and potential today will set the world on course for a more sustainable and food-secure future.”

H.E. Dr. Bandar Hajjar, President of the IsDB, said: “We are delighted to be partnering in launching this new program, which is a solid step in making sure no one is left behind. At the IsDB, we are focused on putting in place the next steps to help achieve gender parity and the Awla fellowship program is a welcome addition to the number of high-profile projects we have launched and designed to promote women and women’s empowerment, along with our IsDB Prize for Women’s Contribution to Development”.

Mr. Hassan Damluji, Deputy Director – Global Policy & Advocacy and Head of Middle East Relations at the Bill & Melinda Gates Foundation said: “This year’s call to action for International Women’s Day is to build a gender-balanced world – and that’s precisely what Awla aims to do for regional agricultural research and development. By providing female researchers with the resources needed to build their skills and networks and a platform to be heard, the program aims to address the gender gap in agricultural R&D and create a more balanced playing field for women and men. This will improve the quality and impact of agricultural research in MENA overall, resulting in more solutions to the region’s most pressing challenges.

“We’re delighted to partner with ICBA and the IsDB on a fellowship program that will produce a wave of skilled, empowered and well-connected female researchers. This first cohort will play a key role in the success and sustainability of the program, and we encourage all candidates from across the focus countries to apply.”  

Mr. Victor Kommerell, Program Manager for the CGIAR Research Program on Wheat, remarked: “We are excited to work together with Awla. We have the same interest – building female science power in the MENA region. Naturally, WHEAT’s focus is on social or natural sciences research connected to wheat-based systems. Awla is the larger program and WHEAT can fit right in. Together, we can build critical mass in a few years’ time.”

Empirical evidence indicates that a disproportionately low number of women work in senior research and leadership positions in the region. The average share of women researchers across the region stands at 17% – the lowest in the world. This gap is most visible in the staffing of agricultural research and extension organizations, despite women making up more than 40% of the labor force in the sector. This means that policy and investment measures in agriculture might not be as effective as they could be because they do not fully reflect gender perspectives.

ICBA developed Awla in 2016 with support from the Bill & Melinda Gates Foundation and the IsDB. The program aims to contribute to the achievement of the UN Sustainable Development Goal (SDG) on gender equality and women’s empowerment by building and enhancing the capacities of a new generation of Arab women researchers and leaders. By doing so, Awla aspires to have a positive impact on the SDGs on Climate Action; Life on Land; and Partnerships for the Goals.

###

About ICBA
The International Center for Biosaline Agriculture (ICBA) is a unique applied agricultural research center in the world with a focus on marginal areas where an estimated 1.7 billion people live. It identifies, tests and introduces resource-efficient, climate-smart crops and technologies that are best suited to different regions affected by salinity, water scarcity and drought. Through its work, ICBA helps to improve food security and livelihoods for some of the poorest rural communities around the world.
www.biosaline.org

About the Bill & Melinda Gates Foundation
Guided by the belief that every life has equal value, the Bill & Melinda Gates Foundation works to help all people lead healthy and productive lives. Through collaboration and partnership, the foundation helps fund research and programs to benefit those living in poverty all around the globe. The foundation works with partners in the Middle East to address the needs of the most vulnerable people through investments in disease eradication, emergency relief and agricultural research, as well as providing support to the philanthropic and development aid sectors.
https://www.gatesfoundation.org/

About IsDB
The Islamic Development Bank (IsDB) Group is one of the world’s largest multilateral development banks that has been working for over 40 years to improve the lives of the communities that it serves by delivering impact at scale.
The Bank brings together 57-member countries across four continents touching the lives of 1 in every 5 of the world’s population.
Rated AAA by the three major rating agencies of the world, the IsDB Mission is to equip people to drive their own economic and social progress at scale, putting the infrastructure in place to enable them to fulfil their potential.
The IsDB builds collaborative partnerships among communities and nations, and work towards the UN Sustainable Development Goals (SDGs) by harnessing the power of science, technology and innovation and fostering ethical and sustainable solutions to the world’s greatest development challenges.
Over the years, the Islamic Development Bank has evolved from a single entity into a group (IsDB Group) comprising five entities: Islamic Development Bank (IsDB), the Islamic Research and Training Institute (IRTI), the Islamic Corporation for the Development of the Private Sector (ICD), the Islamic Corporation for the Insurance of Investment and Export Credit (ICIEC), and the International Islamic Trade Finance Corporation (ITFC).
www.isdb.org

About CGIAR Research Program on Wheat
Joining advanced science with field-level research and extension in lower- and middle-income countries, the
Agri-Food Systems CGIAR Research Program on Wheat (WHEAT) works with public and private organizations worldwide to raise the productivity, production and affordable availability of wheat for 2.5 billion resource-poor producers and consumers who depend on the crop as a staple food. WHEAT is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding for WHEAT comes from CGIAR and national governments, foundations, development banks and other public and private agencies, in particular the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID). www.wheat.org

Press enquiries:
ICBA
Mr. Showkat Nabi Rather, ICBA, Dubai, UAE: s.rather@biosaline.org.ae, or +971 55 137 8653

IsDB
Mr. Muhammad Jameel Yusha’U, IsDB, Jeddah, KSA: myushau@isdb.org, or +966126466421


Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

By Mike Listman

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell Universitythe Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Annual meeting in Ciudad Obregón fosters international research partnerships

By Katie Lutz/CIMMYT
CIUDAD OBREGON, Mexico (April 13, 2016)- Each year, hundreds of wheat researchers from across the globe gather in Ciudad Obregón, Mexico to participate in the International Maize and Wheat Improvement Center’s (CIMMYT) Global Wheat Program (GWP) Visitor’s Week at the Campo Experimental Norman E. Borlaug (CENEB.) This year 220 guests from 31 nations attended visitor’s week during 14-18 March, ending just one week before what would have been 1970 Nobel Peace Prize laureate and former CIMMYT wheat breeder, Norman E. Borlaug’s, 102nd birthday.

The events held in Obregón help to foster a relationship between wheat researchers and facilitate partnerships worldwide. Participants are invited to attend the GWP Field Day at CENEB during the peak of the Obregón wheat growing season to learn more about CIMMYT programs and hear updates on the latest research.