Posts Tagged ‘CGIAR Research Program on Wheat’

A wheat self-sufficiency roadmap for Ethiopia’s future

Mechanization could boost Ethiopian wheat production and provide youth with new job opportunities. (Photo: Gerardo Mejía/CIMMYT)

This blog by Jérôme Bousset was originally posted on CIMMYT.org.

The Ethiopian government announced recently that the country should become wheat self-sufficient over the next four years. Why is boosting domestic wheat production important for this country in the Horn of Africa, and could wheat self-sufficiency be attained in the next four years? The Ethiopian Institute for Agricultural Research (EIAR), with the support of International Maize and Wheat Improvement Center (CIMMYT), gathered agriculture and food experts from the government, research and private sectors on November 23, 2018, to draw the first outlines of this new Ethiopian wheat initiative.

The low-tech domestic wheat farming and price support issue

Despite a record harvest of 4.6 million metric tons in 2017, Ethiopia imported 1.5 million tons of wheat the same year, costing US$600 million. Population growth, continuous economic growth and urbanization over the last decade has led to a rapid change in Ethiopian diets, and the wheat sector cannot keep up with the growing demand for pasta, dabo, ambasha and other Ethiopian breads.

The majority of Ethiopia’s 4.2 million wheat farmers cultivate this cereal on an average of 1.2-hectare holdings, with three quarters produced in Arsi, Bale and Shewa regions. Most prepare the land and sow with draft animal power equipment and few inputs, dependent on erratic rainfall without complementary irrigation. Yields have doubled over the last 15 years and reached 2.7 tons per hectare according to the latest agricultural statistics, but are still far from the yield potential.

According to data from the International Food Policy Research Institute (IFPRI), wheat is preferred by wealthier, urban families, who consume 33 percent more wheat than rural households. Ethiopia needs to rethink its wheat price support system, which does not incentivize farmers and benefits mostly the wealthier, urban consumers. Wheat price support subsidies could, for instance, target bakeries located in poor neighborhoods.

 

Ethiopia’s Minister of Agriculture and Natural Resources, Eyasu Abraha, welcomes conference participants. (Photo: Jérôme Bossuet/CIMMYT)

Where to start to boost wheat productivity?

Ethiopia, especially in the highlands, has an optimum environment to grow wheat. But to make significant gains, the wheat sector needs to identify what limiting factors to address first. The Wheat initiative, led by Ethiopia’s Agricultural Transformation Agency (ATA), has targeted 2,000 progressive farmers across 41 woredas (districts) between 2013 and 2018, to promote the use of improved and recommended inputs and better cropping techniques within their communities. A recent IFPRI impact study showed a 14 percent yield increase, almost enough to substitute wheat imports if scaled up across the country. It is, however, far from the doubling of yields expected initially. The study shows that innovations like row planting were not widely adopted because of the additional labor required.

Hans Braun, WHEAT CGIAR research program and CIMMYT’s Global Wheat Program director, believes Ethiopian farmers can achieve self-sufficiency if they have the right seeds, the right agronomy and the right policy support.

One priority is to increase support for wheat improvement research to make wheat farmers more resilient to new diseases and climate shocks. Drought and heat tolerance, rust resistance and high yields even in low-fertility soils are some of the factors sought by wheat farmers.

International collaboration in durum wheat breeding is urgently needed as the area under durum wheat is declining in Ethiopia due to climate change, diseases and farmers switching to more productive and resilient bread wheat varieties. Braun advises that Ethiopia set up a shuttle breeding program with CIMMYT in Mexico, as Kenya did for bread wheat, to develop high-yielding and stress-resistant varieties. Such a shuttle breeding program between Ethiopia and Mexico would quickly benefit Ethiopian durum wheat farmers, aiming at raising their yields similar to those of Mexican farmers in the state of Sonora, who harvest more than 7 tons per hectare under irrigation. This would require a policy reform to facilitate the exchange of durum germplasm between Ethiopia and Mexico, as it is not possible at the moment.

Ethiopia also needs to be equipped to respond quickly to emerging pests and diseases. Five years ago, a new stem rust (TKTTF, also called Digalu race) damaged more than 20,000 hectares of wheat in Arsi and Bale, as Digalu — the popular variety used by local farmers — was sensitive to this new strain. The MARPLE portable rust testing lab, a fast and cost-effective rust surveillance system, is now helping Ethiopian plant health authorities quickly identify new rust strains and take preventive actions to stop new outbreaks.

CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media during the conference. (Photo: Jérôme Bossuet/CIMMYT)

Invest in soil health, mechanization and gender

In addition to better access to improved seeds and recommended inputs, better agronomic practices are needed. Scaling the use of irrigation would certainly increase wheat yields, but experts warn not to dismiss adequate agronomic research — knowing the optimal water needs of the crop for each agroecological zone — and the underlying drainage system. Otherwise, farmers are at risk of losing their soils forever due to an accumulation of salt.

‘’2.5 billion tons of topsoil are lost forever every year due to erosion. A long-term plan to address soil erosion and low soil fertility should be a priority,” highlights Marco Quinones, adviser at ATA. For instance, large-scale lime application can solve the important issue of acid soils, where wheat does not perform well. But it requires several years before the soil can be reclaimed and visible yield effects can be seen.

Mechanization could also boost Ethiopian wheat production and provide youth with new job opportunities. Recent research showed smallholder farmers can benefit from six promising two-wheel tractor (2WT) technologies. Identifying the right business models and setting up adapted training programs and financial support will help the establishment of viable machinery service providers across the country.

Better gender equity will also contribute significantly to Ethiopia becoming self-sufficient in wheat production. Women farmers, especially female-headed households, do not have the same access to trainings, credit, inputs or opportunities to experiment with new techniques or seed varieties because of gender norms. Gender transformative methodologies, like community conversations, can help identify collective ways to address such inequalities, which cost over one percent of GDP every year.

‘’With one third better seeds, one third good agronomy and one third good policies, Ethiopia will be able to be wheat self-sufficient,” concluded Braun. A National Wheat Taskforce led by EIAR will start implementing a roadmap in the coming days, with the first effects expected for the next planting season in early 2019.

The consultative workshop “Wheat Self-Sufficiency in Ethiopia: Challenges and Opportunities” took place in Addis Ababa, Ethiopia, on November 23, 2018.

Global study paves the way for developing gender-transformative interventions

By Dina Najjar

Gender norms – a set of cultural or societal rules or ideas on how each gender should behave – matters deeply on whether people adopt and benefit from innovations. Gender norms are also fluid, as they respond to changes in society, yet many of us fail to catch up with the changing norms.

Example: As farming becomes less and less profitable, men leave rural areas for cities in search of jobs. This leaves women in charge of farms, especially in subsistence farming, but many policymakers mistakenly believe that women’s roles are still confined to the house. This then becomes a barrier for women to benefit equally from agricultural innovations as men do, which negatively affects agricultural production in the household and community, more broadly.

A breakthrough CGIAR global comparative research initiative “GENNOVATE” has paved the way for developing gender-transformative interventions.

Among many resources it offers is a unique, in-depth gender knowledge base, established following five years of painstaking research – undertaken by 11 CGIAR centers, including ICARDA, and gender specialists across the globe. The study’s vast data and analyses have enabled researchers to move beyond smaller, unconnected studies that have largely defined gender research.

In order to address the question of how gender norms influence men, women, and youth to adopt innovation in agriculture and natural resource management, GENNOVATE has engaged 7,500 participants from 137 rural communities in 26 countries in Africa, Asia, and Latin America. The qualitative comparative study employs a framework based on the understanding that for innovation to be effective, women and men on the ground must exercise “agency” and be active participants in adopting new technology or practice.

The findings cast light on hidden norms within rural farming societies, as well as biases that influence decision making, technology access, and adoption within these societies and in rural development programming.

GENNOVATE also provides tools and resources to help the integration of gender sensitivities into agricultural research for development projects. These evidence-based inputs and recommendations can facilitate the development of less-biased, customized interventions that meets the specific needs of target populations. They can also ensure that this is done in an inclusive, responsible manner in tune with local norms.

This means scientists, practitioners, and policymakers can more easily incorporate gender into their work on climate-smart agriculture, conservation agriculture, mechanization, and farmer-training events, just to name a few. In short, it optimizes the chances of adoption of agricultural and environmental innovation.

ICARDA and GENNOVATE

ICARDA has contributed 10 case studies to GENNOVATE. Three case studies from Morocco focused on linking gender norms and agency with innovations in agriculture, such as drip irrigation, and improved wheat and chickpeas varieties. Uzbekistan’s four case studies linked gender norms and agency with improved wheat varieties. Three cases in India’s Rajasthan studied the link of gender norms and agency with improved barley varieties, contract barley farming, and improved goat breeds.

ICARDA also contributed to three of the six studies featured in The Journal of Gender, Agriculture, and Food Security’s special issue dedicated to GENNOVATE.

The paper “What drives capacity to innovate? Insights from women and men small-scale farmers in Africa, Asia, and Latin America” demonstrated that gender norms and personality attributes influence men’s and women’s ability to try out, adopt, and benefit from agricultural innovations, as well as their ability to make decisions around them – this is an area that has been largely underreported in the innovation literature.

“Gendered aspiration and occupations among rural youth in agriculture and beyond” shows that youth and gender issues are inextricably intertwined, and as a result, they cannot be understood in isolation from each other. The study also shows that deeply-ingrained gender norms often dissuade young women from pursuing agriculture-related occupation.

“Community typology framed by normative climate for agricultural innovation, empowerment, and poverty reduction” made a case that inclusive norms can lead to gender equality and agricultural innovation, deepening the capacity to make decisions that can lead to escape from poverty.

ICARDA’s contribution to GENNOVATE has been made possible with support from CGIAR Research Program on Wheat and CGIAR Research Program on Grain Legumes and Dryland Cereals.

Dina Najjar is a gender specialist at ICARDA.

Inspiring millennials to focus on food security: The power of mentorship

by Mike Listman, November 13, 2018

As part of their education, students worldwide learn about the formidable challenges their generation faces, including food shortages, climate change, and degrading soil health. Mentors and educators can either overwhelm them with reality or motivate them by real stories and showing them that they have a role to play. Every year the World Food Prize lives out the latter by introducing high school students to global food issues at the annual Borlaug Dialogue, giving them an opportunity to interact with “change agents” who address food security issues. The World Food Prize offers some students an opportunity to intern at an international research center through the Borlaug-Ruan International Internship program.
Tessa Mahmoudi

Tessa Mahmoudi, plant microbiologist and 2012 World Food Prize Borlaug-Ruan summer intern, credits the mentorship of CIMMYT researchers in Turkey with changing her outlook on the potential of science to improve food security and health. (Photo: University of Minnesota).

Plant Microbiologist Tessa Mahmoudi, a 2012 World Food Prize’s Borlaug-Ruan summer intern, says her experience working with CIMMYT researchers in Turkey when she was 16 years old profoundly changed her career and her life.

“For a summer I was welcomed to Turkey not as a child, but as a scientist,” says Mahmoudi, who grew up on a farm in southeast Minnesota, USA. “My hosts, Dr. Abdelfattah A. Dababat and Dr. Gül Erginbas-Orakci, who study soil-borne pathogens and the impact those organisms have on food supplies, showed me their challenges and, most importantly, their dedication.”

Mahmoudi explains she still finds the statistics regarding the global food insecurity to be daunting but saw CIMMYT researchers making real progress. “This helped me realize that I had a role to play and an opportunity to make positive impact.”

Among other things, Mahmoudi learned what it meant to be a plant pathologist and the value of that work. “I began to ask scientific questions that mattered,” she says. “And I went back home motivated to study — not just to get good grades, but to solve real problems.”

She says her outlook on the world dramatically broadened. “I realized we all live in unique realities, sheltered by climatic conditions that strongly influence our world views.”

According to Mahmoudi, her internship at CIMMYT empowered her to get out of her comfort zone and get involved in food security issues. She joined the “hunger fighters” at the University of Minnesota while pursuing a bachelor’s in Plant Science. “I was the president of the Project Food Security Club which focuses on bring awareness of global hunger issues and encouraging involvement in solutions.” She also did research on stem rust under Matthew Rouse, winner of the World Food Prize 2018  Norman Borlaug Award for Field Research and Application.

Pursuing a master’s in plant pathology at Texas A&M University under the supervision of Betsy Pierson, she studied the effects of plant-microbe interactions on drought tolerance and, specifically, how plant-microbe symbiosis influences root architecture and wheat’s ability to recover after suffering water stress.

Mahmoudi incorporates interactive learning activities in her class (see her website, https://reachingroots.org/). Her vision is to increase access to plant science education and encourage innovation in agriculture.Currently, Mahmoudi is involved in international development and teaching. As a horticulture lecturer at Blinn College in Texas, she engages students in the innovative use of plants to improve food security and global health.

“As a teacher and mentor, I am committed to helping students broaden their exposure to real problems because I know how much that influenced me,” Mahmoudi says. “Our world has many challenges, but great teams and projects are making progress, such as the work by CIMMYT teams around the world. We all have a role to play and an idea that we can make a reality to improve global health.”

As an example, Mahmoudi is working with the non-profit Clean Challenge on a project to improve the waste system in Haiti. The initiative links with local teams in Haiti to develop a holistic system for handling trash, including composting organic waste to empower small holder farmers to improve their soil health and food security.

“Without my mentors, I would not have had the opportunity to be involved in these high impact initiatives. Wherever you are in your career make sure you are being mentored and also mentoring. I highly encourage students to find mentors and get involved in today’s greatest challenge, increasing food security.”

In addition to thanking the CIMMYT scientists who inspired her, Mahmoudi is deeply grateful for those who made her summer internship possible. “This would include the World Food Prize Foundation and especially Lisa Fleming, Ambassador Kenneth M. Quinn, the Ruan Family,” she says. “Your commitment to this high-impact, experiential learning opportunity has had lasting impact on my life.”

2018 Agricultural Innovation Program meeting: CIMMYT and partners’ achievements in Pakistan

Zero till wheat planting in Jaffarabad District.

By Kashif Syed, September 24

More than 70 agricultural professionals met in Islamabad, Pakistan, during September 4-5 to discuss agronomy and wheat activities under the Agricultural Innovation Program (AIP) for Pakistan. The event provided a platform for institutions involved in agronomy and the dissemination of agricultural technology and seed to share advances, discuss issues, and plan future undertakings.

“Crop productivity must be increased through research on innovative crop management techniques, varietal development and dissemination of better techniques and seed to farming communities,” said Dr. Yusuf Zafar, Chairman of PARC, addressing participants and touching upon a key theme of the event. He emphasized that precision agriculture, decision support systems, the use of drones, water productivity improvements and more widespread mechanization were on the horizon for Pakistani farmers, but that this would require active involvement of the public and private sectors.

Developments in zero tillage farming and ridge planting were highlighted in the two-day conference as conservation agriculture practices that are gaining traction in national wheat farming, according to Imtiaz Muhammad, CIMMYT representative and AIP project leader.

“In collaboration with a national network of 23 public and private partners, CIMMYT has reached more than 25,000 farmers through trainings on zero tillage, ridge planting, and direct seeded rice farming,” Imtiaz said, adding that support to farmers included nutrient management education the provision of seed planters. “These techniques are helping farmers to save water, avoid residue burning, and reduce their production costs.”

Collaboration with agricultural machinery manufacturers and other private sector actors is leading to local production of Zero Till Happy Seeders, which sow directly into unplowed fields and the residues of previous crops, according to Imtiaz. “Innovative approaches have also resulted in the production of 1,500 tons of wheat seed in 2018,” he explained.

Wheat seed production and farmers’ replacement of older varieties have progressed through local seed banks established by AIP in partnership with Pakistan’s National Rural Support Program (NRSP). Located in villages, the banks sell quality wheat seed for up to 12 percent less than local markets. “This is critical, because Pakistan’s wheat seed replacement is only 30 percent,” said Imtiaz, adding that there is a 50 percent gap between potential wheat yields and the national average yield for this crop.

The AIP will open more seed banks in remote areas of Pakistan, in conjunction with national partners. As well as producing and processing seed, the banks will provide farm machinery contract services and precision agriculture tools at subsidized rates.

Participants’ recommendations included adding straw spreaders to combine harvesters for rice, to facilitate the direct sowing of wheat after rice. They also suggested that agricultural service providers should help promote the direct seeding of rice and wheat with zero tillage implements. Participants observed that, in Baluchistan Province, support to farmers and service providers could increase the adoption of zero tillage for sowing wheat after rice and of precision land leveling, to improve irrigation efficiency and save water.

The AIP and partners will continue to promote water saving and nutrient management techniques, as well as building the capacity of farmers, national staff and agricultural service providers. Finally, those attending recommended that, for its second phase, AIP focus on the biofortification of wheat and rice, climate smart agriculture, decision support tools, women in farming, knowledge delivery, appropriate mechanization, nutrient management, weed management and water productivity.

AIP is the result of the combined efforts of the Pakistan Agriculture Research Council (PARC), the International Livestock Research Institute (ILRI), the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Rice Research Institute (IRRI), the World Vegetable Center (AVRDC), the University of California at Davis, and the International Maize and Wheat Improvement Center (CIMMYT). It is funded by the United States Agency for International Development (USAID). With these national and international partners on board, AIP continues to improve Pakistan’s agricultural productivity and economy.

Researchers find “hotspot” regions in the wheat genome for high zinc content

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat, according to a report published in Nature Scientific Reports on 10 September.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as 2 wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

The findings promise greatly to ease development of wheat varieties with enhanced levels of zinc, a critical micronutrient lacking in the diets of many poor who depend on wheat-based food, according to Velu Govindan, wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new report.

“A collaboration among research centers in India, Australia, the USA and Mexico, this work will expedite breeding for higher zinc through use of ‘hotspot’ genome regions and molecular markers,” said Govindan. “It also advances efforts to make selection for grain zinc a standard feature of CIMMYT wheat breeding. Because varieties derived from CIMMYT breeding are grown on nearly half the world’s wheat lands, ‘mainstreaming’ high zinc in breeding programs could improve the micronutrient nutrition of millions.”

More than 17 percent of humans, largely across Asia and Africa, lack zinc in their diets, a factor responsible for the deaths of more than 400,000 young children each year.

Often used in human disease research, the genome-wide association approach was applied in this study to zero in on genome segments — known as quantitative trait loci (QTLs) — that carry genes of interest for wheat grain zinc content, according to Govindan.

“The advantages of the genome-wide association method over traditional QTL mapping include better coverage of alleles and the ability to include landraces, elite cultivars, and advanced breeding lines in the analysis,” he explained. “Our study fully opens the door for the expanded use of wheat progenitor species as sources of alleles for high grain zinc, and the outcomes helped us to identify other candidate genes from wheat, barley, Brachypodium grasses, and rice.”
Farmers in South Asia are growing six zinc-enhanced wheat varieties developed using CIMMYT breeding lines and released in recent years according to Ravi Singh, head of the CIMMYT Bread Wheat Improvement Program.

Financial support for this study was provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. It was also supported by CGIAR Funders, through the Research Program on Wheat and the Research Program on Agriculture for Nutrition and Health. Research partners in India and Pakistan greatly contributed to this study by conducting high-quality field trials.

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

By Mike Listman

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell Universitythe Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Wheat-rye crosses provide control for deadly sap-sucking aphid

Pictured are Martin Kropff, CIMMYT director general (left) and Mustapha El-Bouhssini, ICARDA entomologist, in that center’s lab at Rabat, Morocco.

In an excellent example of scientific collaboration spanning borders and generations, Mustapha El-Bouhssini, entomologist at the International Centre for Agricultural Research in the Dry Areas (ICARDA), screened wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) under glasshouse infestations of Russian wheat aphid (Diuraphis noxia), a major global pest of wheat. At least one of the lines, which were developed through crosses of wheat with related crop and grass species, showed high levels of resistance.

Scientists at CIMMYT began research on sources of RWA resistance for wheat in the early 1990s. Good sources of resistance from rye were accessed via wide crosses that combined major portions of both crop’s chromosomes, in collaborative work led by Adam J. Lukaszewski, University of California, Riverside.

“In our experiments, we did an initial screening with one replication and then a replicated test with a Pavon line and the check,” said El-Bouhssini.

Pavon is a semi-dwarf wheat variety developed by Sanjaya Rajaram, former CIMMYT wheat director and 2014 World Food Prize laureate. The version of Pavon referred to by El-Bouhssini had been crossed with rye by Lukaszewski and entered CIMMYT’s wheat genetic resource collections; the check was a popular high-yielding variety with no resistance to Russian wheat aphid.

Pavon had been used by Lukaszewski and colleagues as a model variety for wide crosses to transfer pest and disease resistance to wheat from its distant relatives. More recently Leonardo Crespo-Herrera, CIMMYT wheat breeder, pursued this research for his doctoral studies. It was he who provided a selection of wide-cross lines to El-Bouhssini.

“Resistance to pests in wheat is a valuable trait for farmers and the environment,” said Crespo-Herrera. “It can protect yield for farmers who lack access to other control methods. For those with access to insecticides, it can minimize their use and cost, as well as negative impacts on the environment and human health.”

 

The resistant wheat line (center) is green while all others have perished under heavy infestation of Russian wheat aphid, in the ICARDA entomology lab at Rabat, Morocco.

Call for action on wheat blast threat in South Asia

This blast-infected wheat spike contains no grain, only chaff. Photo: CIMMYT files

By Gideon Kruseman and Mike Listman

A spatial mapping and ex ante study regarding the risk and potential spread in South Asia of wheat blast, a mysterious and deadly disease from the Americas that unexpectedly infected wheat in southwestern Bangladesh in 2016, identified 7 million hectares of wheat cropping areas in Bangladesh, India, and Pakistan whose agro-climatic conditions resemble those of the Bangladesh outbreak zone.

The study shows that, under a conservative scenario of 5-10% wheat blast production damage in a single season in those areas, wheat grain losses would amount to from 0.89 to 1.77 million tons, worth between $180 and $350 million. This would strain the region’s already fragile food security and force up wheat imports and prices, according to Khondoker Abdul Mottaleb, first author of the study.

“Climate change and related changes in weather patterns, together with continuing globalization, expose wheat crops to increased risks from pathogens that are sometimes transported over long distances,” said Mottaleb.

Foresight research at the International Maize and Wheat Improvement Center (CIMMYT) has focused on new diseases and pests that have emerged or spread in recent decades, threatening global food safety and security. For wheat these include Ug99 and other new strains of stem rust, the movement of stripe rust into new areas, and the sudden appearance in Bangladesh of wheat blast, which had previously been limited to South America.

“As early as 2011, CIMMYT researchers had warned that wheat blast could spread to new areas, including South Asia,” said Kai Sonder, who manages CIMMYT’s geographic information systems lab and was a co-author on the current study, referring to a 2011 note published by the American Pathological Society. “Now that forecast has come true.”

CIMMYT has played a pivotal role in global efforts to study and control blast, with funding from the Australian Center for International Agricultural Research (ACIAR), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agriculture Research (ICAR), and the United States Agency for International Development (USAID).

This has included the release by Bangladesh of the first blast resistant, biofortified wheat variety in 2017, using a CIMMYT wheat line, and numerous training events on blast for South Asia researchers.

Click here to read the article in PLOS-One: “Threat of wheat blast to South Asia’s food security: An ex-ante analysis.

 

 

 

Wheat blast screening and surveillance training in Bangladesh

Photo: CIMMYT/Tim Krupnik

Fourteen young wheat researchers from South Asia recently attended a screening and surveillance course to address wheat blast, the mysterious and deadly disease whose surprise 2016 outbreak in southwestern Bangladesh devastated that region’s wheat crop, diminished farmers’ food security and livelihoods, and augured blast’s inexorable spread in South Asia.

Held from 24 February to 4 March 2018 at the Regional Agricultural Research Station (RARS), Jessore, as part of that facility’s precision phenotyping platform to develop resistant wheat varieties, the course emphasized hands-on practice for crucial and challenging aspects of disease control and resistance breeding, including scoring infections on plants and achieving optimal development of the disease on experimental wheat plots.

Cutting-edge approaches tested for the first time in South Asia included use of smartphone-attachable field microscopes together with artificial intelligence processing of images, allowing researchers identify blast lesions not visible to the naked eye.

“A disease like wheat blast, which respects no borders, can only be addressed through international collaboration and strengthening South Asia’s human and institutional capacities,” said Hans-Joachim Braun, director of the global wheat program of the International Maize and Wheat Improvement Center (CIMMYT), addressing participants and guests at the course opening ceremony. “Stable funding from CGIAR enabled CIMMYT and partners to react quickly to the 2016 outbreak, screening breeding lines in Bolivia and working with USDA-ARS, Fort Detrick, USA to identify resistance sources, resulting in the rapid release in 2017 of BARI Gom 33, Bangladesh’s first-ever blast resistant and zinc enriched wheat variety.”

Cooler and dryer weather during the 2017-18 wheat season has limited the incidence and severity of blast on Bangladesh’s latest wheat crop, but the disease remains a major threat for the country and its neighbors, according to P.K. Malaker, Chief Scientific Officer, Wheat Research Centre (WRC) of the Bangladesh Agricultural Research Institute (BARI).

“We need to raise awareness of the danger and the need for effective management, through training courses, workshops, and mass media campaigns,” said Malaker, speaking during the course.

The course was organized by CIMMYT, a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, with support from the Australian Center for International Agricultural Research (ACIAR), Indian Council of Agricultural Research (ICAR), CGIAR Research Program on Wheat (WHEAT), the United States Agency for International Development (USAID), and the Bangladesh Wheat and Maize Research Institute (BWMRI).

Speaking at the closing ceremony, N.C.D. Barma, WRC Director, thanked the participants and the management team and distributed certificates. “The training was very effective. BMWRI and CIMMYT have to work together to mitigate the threat of wheat blast in Bangladesh.”

Other participants included Jose Mauricio Fernandes, EMBRAPA-Passo Fundo, Brazil; Pawan Singh, CIMMYT wheat pathologist; T.P. Tiwari, Timothy J. Krupnik, and D.B. Pandit, CIMMYT-Bangladesh; Bahadur Mia, Bangladesh Agricultural University (BAU); and scientists from BMWRI and BARI, the Nepal Agricultural Research Council NARC, and Assam Agricultural University (AAU), India.

Q+A with Iván Ortíz-Monasterio on nitrogen dosages and greenhouse gases

Iván Ortíz-Monasterio, expert on sustainable intensification and wheat crop management at the International Maize and Wheat Improvement Center (CIMMYT), recently took part in a study detailing the detriments of excess fertilizer use and the benefits of more precise dosages.

In the following interview, he discusses the overuse of nitrogen fertilizer and related consequences, his experience with farmers, and his outlook for the future. According to Ortíz-Monasterio and study co-authors, research on wheat in the Yaqui Valley, state of Sonora, northwestern Mexico, and home to CIMMYT’s Norman E. Borlaug Experiment Station (CENEB), has direct implications for wheat crop management worldwide.

“The Yaqui Valley is agro-climatically representative of areas where 40 percent of the world’s wheat is grown, including places like the Indo-Gangetic Plains of India and Pakistan, the Nile Delta in Egypt, and the wheat lands of China,” said Ortíz-Monasterio.

  1. A key finding of the new publication was that, after a certain point, applying more nitrogen fertilizer does not increase yields, making excessive applications essentially a drain on farmers’ resources. Why then do farmers continue to apply more fertilizer than the crop needs?

Well there is a risk, if you under-apply N fertilizer, your yield goes down. Farmers are afraid that the yield will be lower and that their profit will be lower. The cost of under-applying for them is greater than the cost of over-applying, because they’re not paying all the costs of over applying. Those costs include the environmental impacts associated with greenhouse gas emissions, at a regional scale in the case of the Yaqui Valley because of nitrification of the Sea of Cortez, and at a local level due to contamination of the water table. All these costs are passed on to society. If we passed them on to farmers, then they would be more concerned about over-applying nitrogen fertilizers.

-Do you think farmers becoming more concerned is something that could happen?

Well there are starting to be more regulations in Europe. In the UK, farmers cannot apply any nitrogen before or at sowing; they can apply fertilizer only once the plant is about 15 centimeters tall. In other parts of Europe, like Germany, farmers cannot apply more than 150 kilograms of nitrogen on wheat, so it’s happening in other parts of the world. The government of Mexico and others are making commitments to reduce nitrous oxide emissions by 20 percent by 2030 and, in the case of agriculture, the main source of nitrous oxide is nitrogen fertilizer. To meet such commitments, governments will have to take policy action so, yes; I think there’s a good chance something will happen.

  1. There are technologies that can help farmers know precisely when to apply fertilizer and how much, for optimal crop yield and nitrogen use. Do many farmers use them? Why or why not?

NDVI (normalized difference vegetative index) map. Photo: CIMMYT.

Something interesting to me is what’s happening right now. For the last 10 years, we’ve been working with Yaqui Valley farmers to test and promote hand-held sensors and hiring farm advisors paid with government money who provide this service free to farmers, and adoption was high. Then the government removed the subsidy, expecting farmers to begin covering the cost, but

farmers didn’t want to pay for it.

Then a company that uses drones approached me and other researchers in the region and requested our help to convert wheat crop sensor data obtained using airborne drones to recommended fertilizer dosages. We agreed and, in their first year of operation, farmers growing wheat on 1,000 hectares paid for this service. I don’t know what it is—maybe seeing a colorful map is more sexy—but farmers seem to be willing to pay if you fly a drone to collect the data instead of having a farm advisor walk over the field. But it’s great! In the past we relied on the government to transfer the technology and now we have this  great example of a private-public partnership, where a company is helping to transfer the technology and making a profit, so that will make it sustainable. I’m very excited about that!

  1. Does CIMMYT have a plan to increase adoption of these technologies?

A CIMMYT technician uses a hand-held sensor to measure NDVI (normalized difference vegetative index) in a wheat field at the center’s CENEB experiment station near Ciudad Obregón, Sonora, northern Mexico. Photo: CIMMYT.

We’re not married to one technology, but need to work with all of them. You know we started with Greekseeker, which is a ground-based sensor, and now we’re also working with drones, with manned airplanes mounted with cameras, and even satellite images. So, there are four different ways to collect the data, and we’ve seen that the Greenseeker results correlate well with all of them, so the technology we developed originally for Greenseeker can be used with all the other platforms.

  1. Are you optimistic that farmers can shift their perceptions in this area and significantly reduce their nitrogen use?

I think we’re moving in that direction, but slowly. We need policy help from the government. Officials need to give some type of incentive to farmers to use the technology, because when farmers do something different they see it as a risk. To compensate for that risk, give them a carrot, rather than a stick, and I think that will help us move the technology faster.