Posts Tagged ‘CGIAR’

Sowing seeds of the future

Alison Bentley, the incoming director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat, completed her formal education at the University of Sydney in Australia, with support from the Crawford Fund. In the blog below, originally posted on the website of the Crawford Fund, Alison Bentley looks back at her early career and the lessons she will take to her new role at CIMMYT.


Alison at the Crawford Fund Master Class in Turkey, 2003.

By Alison Bentley

In November 2020, I’ll be moving (at least in the virtual sense, given current travel restrictions) to the International Maize and Wheat Improvement Center (CIMMYT), based in Mexico, to lead the Global Wheat Program (GWP). CIMMYT’s GWP has an incredible track record of impact, delivering varieties and germplasm to support wheat production throughout the world.

My first experience of working with CIMMYT was in 2003 as an attendee at the first Crawford Master Class on Soil-Borne Pathogens of Wheat in Turkey, hosted by Dr. Julie Nicol (the then-CIMMYT soil-borne disease pathologist) and colleagues. As a new PhD student at The University of Sydney in Australia, this was an incredible scientific experience with the course encompassing field visits, lab practicals and lectures from leading scientists (including my PhD supervisor Professor Lester Burgess). In addition, it was my first visit to the Central West Asia & North Africa (CWANA) region and an opportunity to interact with CWANA wheat scientists.

Beyond the scientific learning, I remember the lunchtime football matches, social events and sense of excitement in our discussions about new ideas and future impacts. I was also fortunate to have financial support from the Crawford Fund NSW Committee to stay on in Turkey to conduct a survey of soil-borne diseases of wheat (supporting my PhD research). What a privilege it was to travel around Turkey with Dr. Berna Tunali from the University of Ondokus Mayýs, sampling wheat fields by day and eating grilled fish by the Coast of Marmara by night.

The collaboration allowed us to conduct a quantitative survey of the community of Fusarium species associated with wheat in northern production regions. It also provided me with a firm view of the context of my PhD research and of how working with partners greatly enhances the value (and enjoyment) of scientific research.

From these early months of my PhD spent in Turkey to its progression and completion (including international collaborations with Plant & Food New Zealand, Kansas State University, Cornell University and national collaborations with the South Australia Research and Development Institute and the Western Australia Department of Agriculture), I further learned the value of partnerships and collaboration. I also came to fully appreciate the importance of understanding context: what does the challenge look like in the field or system it is relevant to, how will change be implemented and by who? My supervisor Lester Burgess often cited “serendipity,” and it always struck me that what he was actually describing was not really pure good fortune, but the result of “making your own luck.”

I recall many days in northwest New South Wales driving long stretches on the trail of crown rot infections in farm crops and conversations with agronomists asking for tip-offs on recent sightings of disease. This process led to many important discoveries, notably for my PhD: the nature of sexual reproduction by the crown rot fungus and an understanding of spatial relationships of genetic variation in the field.

Alison Bentley (right) and Martin Jones (left) in the glasshouse at NIAB. Photo credit: Toby Smith/Gloknos.

The time spent talking to agronomists, visiting farms and conducting field surveys proved invaluable to my PhD. When I moved to the United Kingdom and joined the National Institute of Agricultural Botany (NIAB) in 2007 it was my foundational starting point. At NIAB, I joined the team embarking on a pioneering program of wheat pre-breeding to deliver systematically developed and validated resources for wheat improvement. When it started, this translational program aimed to bridge the gap between fundamental discoveries in model plant species and commercial breeding. It has led to the production of a wealth of genetic resources in commercially relevant genetic backgrounds for rapid uptake into breeding.

The program outputs to date include precisely defined germplasm (near-isogenic lines), user-friendly high-throughput genetic markers (for marker assisted selection), multi-founder populations and re-synthesised wheat incorporating untapped genetic diversity.

The resources developed at NIAB and by other institutes and universities have resulted in the UK having arguably one of the most prolific public sector germplasm creation programs worldwide outside the CGIAR. This has resulted in interest from both the research and breeding sector, leveraging significant public- and private-sector investment. Breeding programs in Europe, South and North America, Africa, Asia, and Australia have accessed material, indicative of global impact and success.

In moving to CIMMYT, I take forward the many lessons I have learned since my first Crawford Fund-supported visit to Turkey back in 2003. That visit was the seed of my future motivation to deliver science-led solutions to support global wheat production. My subsequent PhD research and time at NIAB have multiplied that seed into vast fields. CIMMYT, and CGIAR breeding deliver improved wheat germplasm into the hands of farmers. Seeds multiplied into fields multiplied into support for global farming communities.

https://flic.kr/p/2j2kd48

A “track record of delivering local solutions with a global perspective:” Review confirms impact and importance of WHEAT research

https://flic.kr/p/2j2kd48
Wheat trainees and CIMMYT staff examine wheat plants in the field at the experimental station in Toluca, Mexico. Credit: CIMMYT / Alfonso Cortés

The CGIAR Research Program on Wheat (WHEAT) has “a track record of delivering local solutions with a global perspective — and is well positioned to continue this trajectory in the next decade.”

This was a key finding of a recent review of the program aimed to assess WHEAT’s 2017-2019 delivery of quality science and effectiveness, as well as to provide insights and lessons to inform the program’s future.

“Wheat as a crop is bound to be central to global food security in the foreseeable future,” the reviewers stated.

The crop currently contributes 20% of the world population’s calories and protein—and global demand is estimated to increase by 44% between 2005-07 and 2050.

WHEAT — led by the International Maize and Wheat Improvement Center (CIMMYT) with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a key research partner —has two pillars that are essential to meeting this demand: raising potential yield through breeding and closing the yield gap through sustainable intensification at field, farm and landscape scales.

Key recommendations included supporting strategic investment in research partner network development and maintenance, and continuing WHEAT’s trajectory towards modernizing breeding processes and integrating sustainable intensification approaches, including mechanization.

The reviewers warned of challenges for the way ahead, pointing out that partnerships — and WHEAT’s reputation as a reliable partner — are vulnerable to funding volatility. The review also raised concerns about the potential fragmentation of the global breeding program, restrictions to the international exchange of germplasm and ideas, “misguided” emphasis on minor crops, and CGIAR’s “focus on process at the expense of results.”

“This review cuts to the core of what’s so critical—and at risk – not only with our program but wheat research in general,” said Hans Braun, director of the CIMMYT Global Wheat Program and the CGIAR Research Program on Wheat. “Global collaboration and the exchange of improved seeds, data, and especially information.”

“The reviewers rightly point out that limited resources will lead to competition and dampen this collaboration—even between scientists in the same program. We must address this potential risk to improve integration and continue our life saving work.” 

“In most of the developing world, the alliance of public sector and CGIAR wheat breeding programs, as well as some national public breeding programs on their own, will remain dominant providers of wheat varieties, until either functioning seed royalty collection systems are established and/or hybrid wheat becomes a reality,” he added.

WHEAT’s strength is its robust global network of research for development partners and scientists linked to global breeding in a ‘wide adaptation’ approach,” said Victor Kommerell, program manager for the CGIAR Research Programs on Wheat and Maize.

“This review underscores that breaking up the breeding program could cause lasting damage to this network.”

More key findings include:

  • WHEAT is effective and well-managed: In 2017- 2019, WHEAT mainly achieved its planned outputs and outcomes, and in addition achieved unplanned outcomes. For the three years reviewed, WHEAT did not drop any research line.
  • WHEAT’s strength is its partnerships: WHEAT has catalyzed a global network of research and development (R&D) that has delivered and continues to deliver a disproportionate wealth of outputs in relation to investment.
  • WHEAT creates, and thrives on, collaboration: The predominantly public nature of wheat R&D (In the period 1994–2014, the public sector accounted for 63% of global wheat varietal releases and more than 95% of releases in developing countries) favors collaboration, compared with other industries.
  • WHEAT facilitates shared success: The long history of collaboration between CIMMYT, ICARDA and national partners has fostered a sense of belonging to the International Wheat Improvement Network that permits free exchange of information and germplasm, allowing the best varieties to be released, irrespective of origin. International nursery testing delivers elite lines for national program use; data shared by national programs informs WHEAT’s next crossing cycle.

Read more in a 2-page brief summarizing key findings, conclusions and recommendations or on the CGIAR Advisory Services page.

Excellence in Agronomy 2030 initiative launched at African Green Revolution Forum

New research platform focuses on helping smallholder farmers sustainably increase production and adapt to climate change, reducing yield and efficiency gaps in major crops

Nine CGIAR centers, supported by the Big Data Platform, launched the Excellence in Agronomy 2030 initiative today at the African Green Revolution Forum (AGRF) online summit.

The Excellence in Agronomy 2030 (EiA 2030) initiative will assist millions of smallholder farmers to intensify their production systems while preserving key ecosystem services under the threat of climate change. This initiative, co-created with various scaling partners, represents the collective resolve of CGIAR’s agronomy programs to transform the world’s food systems through demand- and data-driven agronomy research for development.

EiA 2030 will combine big data analytics, new sensing technologies, geospatial decision tools and farming systems research to improve spatially explicit agronomic recommendations in response to demand from scaling partners. Our science will integrate the principles of Sustainable Intensification and be informed by climate change considerations, behavioral economics, and scaling pathways at the national and regional levels.

A two-year Incubation Phase of EiA 2030 is funded by the Bill & Melinda Gates Foundation. The project will demonstrate the added value of demand-driven R&D, supported by novel data and analytics and increased cooperation among centers, in support of a One CGIAR agronomy initiative aiming at the sustainable intensification of farming systems.

Speaking on the upcoming launch, the IITA R4D Director for Natural Resource Management, Bernard Vanlauwe, who facilitates the implementation of the Incubation Phase, said that “EiA 2030 is premised on demand-driven agronomic solutions to develop recommendations that match the needs and objectives of the end users.”

Christian Witt, Senior Program Officer from the Bill & Melinda Gates Foundation, lauded the initiative as a cornerstone for One CGIAR. “It is ingenious to have a platform like EiA 2030 that looks at solutions that have worked in different settings on other crops and whether they can be applied in a different setting and on different crops,” Witt said.

Martin Kropff, Director General of the International Maize and Wheat Improvement Center (CIMMYT), spoke about the initiative’s goals of becoming the leading platform for next-generation agronomy in the Global South, not only responding to the demand of the public and private sectors, but also increasing efficiencies in the development and delivery of solutions through increased collaboration, cooperation and cross-learning between CGIAR centers and within the broader agronomy R&D ecosystem, including agroecological approaches.

CGIAR centers that are involved in EiA include AfricaRice, the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Center for Agricultural Research in the Dry Areas (ICARDA), World Agroforestry Center (ICRAF), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the International Institute of Tropical Agriculture (IITA), and the International Rice Research Institute (IRRI)

CIMMYT Annual Report 2019 launched

This post was originally published on the CIMMYT website.

Read the web version of the Annual Report 2019

Download the Annual Report 2019 in PDF format 

Download the financial report 2019

In 2019, CIMMYT continued to perform groundbreaking crop research and forge powerful partnerships to combat hunger and climate change, preserve maize and wheat biodiversity, and respond to emerging pests and diseases.  

Bill Gates spoke about the “essential role of CGIAR research centers in feeding our future” and together with other stakeholders urged us to “do even better.” In his Gates Notes blog, he highlighted the great example of CIMMYT’s drought-tolerant maize, which helps resource-poor farmers withstand increasing climate risks. 

Over the course of the year, we supported our national partners to release 82 maize and 50 wheat varieties. More than 14,000 farmers, scientists, and technical workers across the world took part in over 900 training and capacity development activities. CIMMYT researchers published 386 peer-reviewed journal articles. 

In 2019, CIMMYT also marked the end of a decade of achievements in seed security. CIMMYT celebrated being the largest depositor at the Svalbard Global Seed Vault with 173,779 accessions from 131 countries. The most recent deposit included 15,231 samples of wheat and 332 samples of maize. 

Innovative solutions like DNA fingerprinting – a method used to identify individual plants by looking at unique patterns in their genome – brought state of the art research into farmer’s fields, providing valuable insights into the diversity of wheat varieties grown in Afghanistan and Ethiopia.   

CIMMYT also continued to play a key role in the battle against fall armyworm, coordinating a global research-for–development consortium to build an evidence-based response against the pest in both Africa and Asia. 

Through the Cereal Systems Initiative for South Asia (CSISA), CIMMYT helped women find business opportunities and empowered female entrepreneurship with the help of mechanization solutions. 

The year 2019 showed us that while CIMMYT’s work may begin with seeds, our innovations support farmers at all stages of the value chain. The year ahead will be a challenging one as we continue to adjust to the “new normal” of life under COVID-19.  We hope you enjoy this Annual Report as we look back on the exciting year that was 2019.   

Read the web version of the Annual Report 2019

Download the Annual Report 2019 in PDF format 

Download the financial report 2019

CGIAR’s Response to COVID-19

This article was originally posted on the CGIAR website.

Photo: Eneas De Troya/Flickr.

The novel coronavirus (COVID-19) continues to spread rapidly. Since its start in China in December, the outbreak has spread to more than 100 countries, endangering the health and livelihoods of millions. To contain the pandemic, many cities and regions across the world have been shut down, putting a halt to day-to-day activities.

As Western economies struggle with difficult decisions – it is those in the global South that are most at risk. Economies that are dependent on tourism, trade and foreign investment have fewer options at their disposal.

An urgent and coordinated global response is needed – from the global to the local level to protect populations – and especially the most vulnerable. Food security is fragile under normal circumstances and must not be ignored as part of a One Health strategy.

CGIAR, as the world’s largest public research network on food systems, provides evidence to help understand and address threats to food and nutrition security from the COVID-19 pandemic, such as:

  • The food system has been significantly affected, and these impacts will grow if processing enterprises cannot restart production in a near future;
  • Production of staple food crops such as wheat, rice, and vegetables will be affected if the outbreak continues into critical planting periods;
  • Domestic and international trade disruptions may trigger food price panics;
  • Restrictions on mobility may lead to labor shortages.

CGIAR will make available its latest research and analysis on COVID-19 to support authorities and the public in making informed decisions during the current crisis. In the research and news featured below, CGIAR scientists provide evidence-based advice and recommendations on:

  • Introducing enabling policies for spring planting and increasing support for production entities;
  • Ensuring the smooth flow of trade and making full use of the international market as a vital tool to secure food supply and demand;
  • Ensuring smooth logistical operations of regional agricultural and food supply chains;
  • Monitoring food prices and strengthening market supervision;
  • Protecting vulnerable groups and providing employment services to migrant workers;
  • Regulating wild food markets to curb the source of the disease;
  • Measuring impact on small and medium-sized businesses;
  • Analyzing how much global poverty will increase because of COVID-19.

Wheat to beat the heat

Adapted from a blog by Jacques Wery, ICARDA Deputy Director General – Research, originally posted on the International Center for Agriculture in the Dry Areas (ICARDA) website.

Land temperature on June 26, 2019. Map generated using information from the Copernicus Sentinel-3’s Sea and Land Surface Temperature Radiometer

Western Europe is in the midst of an intense heat wave that started at the end of June. The southern French commune of Villevieille recorded a temperature of 45.1 °C, breaking the country’s all-time record. The heat also set new temperature records in Germany and the Czech Republic. Other countries like Italy, Spain and Portugal are also gripped with temperatures much higher than normal.

Scientists have attributed the soaring temperatures to the combination of a storm over the Atlantic Ocean and high pressure over central Europe, which is importing hot air from the Sahara. Though heat waves are not uncommon in Europe, this one was unusually early. Experts say climate change is making heat waves more common (Global warming of 1.5 °C IPCC Special Report).

Apart from human health, the heat wave is already causing significant damage in agriculture. Major wheat growers experienced temperatures of 40 °C and higher. This is of great concern, as the heat wave occurred during the crop’s critical growth stages. Wheat is a cool season crop with an optimal daytime growing temperature of 15 °C during the critical reproductive stage. Wheat plants exposed to high temperatures around the period of flowering lose fertility due to pollen dehydration, resulting in less grain formed. It is calculated that for every degree above the optimum 15 °C, wheat experiences a yield reduction of three to four percent.

If a heat wave like such as this one had occurred one month earlier, at the end of May, when Northern European wheat is in full bloom, it could have caused up to 50 percent yield loses, a devastating blow to the European agriculture and food sectors costing billions of Euros.

The response of scientists

Breeding heat tolerant wheat varieties remains one of the most strategic approaches to cope with the risk of unseasonal heat waves. The International Center for Agricultural research in Dry Areas (ICARDA) started in 2012 to use field stations that experience continuous heat-stress to select new wheat cultivars better primed to tolerate this stress.

In Sudan, the experimental farm of Wad Medani was developed together with the Agricultural Research Corporation (ARC) and CIMMYT (International Center for Maize and Wheat Improvement), to test thousands of wheat candidate varieties each year. This station experiences average maximum daily temperatures above 30 °C throughout the growing season, which is less than 100 days long, from planting to harvest. This test was used to identify critical genes controlling heat-tolerant in common wheat, and to release new cultivars of bread wheat and durum wheat capable of withstanding severe heat.

The ICARDA-ISRA durum variety Haby
Senegalese female cooperative growing the ICARDA-ISRA durum variety Haby at above 32 C throughout the season.

Similarly, two heat-stress experimental farms were developed in West Africa to test durum wheat germplasm. In collaboration with Prof Rodomiro Ortiz  of the Swedish University of Agricultural Sciences (SLU) Department of Plant Breeding, the stations of Kaédi in Mauritania and Fanaye in Senegal were upgraded in partnership with the Centre National de Recherche Agronomique et de Développement Agricole (CNRADA) and the Institut Sénégalais de Recherche Agricole (ISRA).

Field testing conducted at these stations – with daily temperatures above 32 °C throughout the cycle and a season of only 90 days – have revealed four new durum wheat cultivars perfectly adapted to tolerate intense heat. The work conducted in West Africa has even resulted in the awarding of the prestigious OLAM Prize for Innovation in Food Security to the team of researchers involved.

To convert this success into cultivars that could be grown, heat tolerance must be combined with the ability to cope with drought stress. An experiment was devised at the Marchouch station in Morocco, where plastic tunnels were placed on the wheat plants at the time of flowering to raise temperatures to above 40 °C and simultaneously prevent any rainfall from reaching the plants.

Plastic tunnels at the ICARDA Marchouch station in Morocco
Plastic tunnels were placed on the wheat plants at the time of flowering at the ICARDA Marchouch station in Morocco

When all other tested varieties lost more than 50 percent yield to the two combined stresses, the ICARDA-INRA (Institut Nationale de la Recherche Agronomique in Morocco) cultivar Faraj lost only 25 percent, a major positive result considering the severity of the stresses tested. Along the same principles, more than 60 wheat varieties of ICARDA origin have been released by national breeding programs in Central and West Asia and North Africa regions and sub- Saharan Africa regions in the last five years alone, thanks to the ability of the germplasm to adapt to some of the most severe wheat stresses occurring around the world.

Can Europe take advantage of success stories?

In the USA and Canada, farmers grow mostly wheat varieties developed and commercialized by public wheat breeding programs. These cultivars have been very popular and public sector wheat-breeding activities are vital to the industry.

In Australia, wheat breeding is conducted by the private sector. However, public researchers are spending the same amount of money on pre-breeding as they did 10 years ago on breeding and variety development together. To take advantage of some of the success stories of ICARDA and CIMMYT, the Australian wheat breeding programs established 10 years ago the CIMMYT-Australia-ICARDA Germplasm Evaluation project (CAIGE). Each year, Australian breeders visit the trials of ICARDA in Morocco and CIMMYT in Mexico. They select the top high yielding wheat genotypes that combine drought and heat tolerance, with other useful traits. These are then imported and tested across Australian sites to confirm the best one for commercialization or use in hybridization programs.

Dr Allan Rattey
Allan Rattey, national early generation wheat breeder with Intergrain/Australia, toured Morocco in April 2019 to witness the performances of ICARDA germplasm in a season that received less than 200 mm of total moisture, equivalent to what most regions of Northern Europe receive in the month of December alone, and with temperatures during flowering regularly exceeding 26 °C.  Dr. Rattey had a chance to select a range of novel genetic material in the form of promising ICARDA lines tested next to popular Australian varieties. 

In Europe, the situation is more like Australia, and public researchers do not work directly on the commercialization and development of varieties, which is left to the private companies. Instead, public research focuses on pre-breeding to develop new breeding techniques and on high-risk, longer-term targets, thereby supporting the private sector and farmers with high-tech innovations.

CGIAR centers such as ICARDA and CIMMYT have worked in close collaboration with European universities and advanced research institutions for a long time to develop and adapt the most novel technologies for pre-breeding. It might also be advantageous for European private sector companies to start taking advantage of CGIAR stress-tolerant wheat varieties and develop a system similar to CAIGE used by Australian breeders. By taking advantage of similar environments in Morocco and  Mediterranean environments in Europe, European breeders can select promising germplasm of tomorrow and provide the continent’s agricultural sector with a practical defense against future heat waves.

The Benefits of U.S. Investment in Global Wheat Research Collaboration

This article by Elizabeth Westendorf, Assistant Director of Policy at U.S. Wheat Associates, was originally posted on USWheat.org 

Photo: U.S. Wheat Associates

Seventy-five years ago, the seeds of the Green Revolution were planted when Norman Borlaug began his work on wheat breeding in Mexico. The success of that effort, which was a partnership between the Mexican government and the Rockefeller Foundation, led to the eventual founding of the International Maize and Wheat Improvement Center (CIMMYT).

In 1971, CGIAR was established as an umbrella organization to create an international consortium of research centers. CIMMYT was one of the first research centers supported through the CGIAR, which today includes 15 centers around the world with a local presence in 70 countries. Each center focuses on unique challenges, but they are all driven by three broad strategic goals: to reduce poverty; to improve food and nutrition security; and to improve natural resources and ecosystem services.

For 50 years, wheat has been one of the core crops of CGIAR’s focus. CGIAR receives annual funding of about $30 million for wheat, and the economic benefits of that wheat breeding research range from $2.2 to $3.1 billion. This is a benefit-cost ratio of at least 73 to 1 — for every $1 spent in CGIAR wheat research funding, there is more than $73 in economic benefits to global wheat farmers. CIMMYT’s international wheat improvement programs generate $500 million per year in economic benefits. Globally, nearly half of the wheat varieties planted are CGIAR-related; in South, Central and West Asia and North Africa, that number rises to 70 to 80 percent of wheat varieties. When wheat supplies 20 percent of protein and calories in diets worldwide, CGIAR wheat research can have a major impact on the livelihoods of the world’s most poor people.

CGIAR Research Centers have also led to significant benefits for U.S. farmers as well. Approximately 60 percent of the wheat acreage planted in the U.S. uses CGIAR-related wheat varieties. CIMMYT wheat improvement spillovers in the United States repay the total U.S. contribution to CIMMYT’s wheat improvement research budget by a rate of up to 40 to 1. Another partner, the International Center for Agricultural Research in the Dry Areas (ICARDA), has delivered innovations that protect U.S. farmers from crop losses due to destructive pests, and has also partnered with CIMMYT to develop the One Global Wheat Program under CGIAR.

One aspect of the CGIAR success story in the United States is about partnership. Public U.S. universities around the country have partnered with CGIAR on agricultural research, to the benefit of U.S. farmers and farmers worldwide. This partnership allows for knowledge transfer and idea-sharing on a global scale. USW is proud that many of our member states have universities that have partnered with CGIAR on wheat projects.

The news is not all good, however. As we anticipate world population growing to 10 billion in 2050, the demand for wheat is expected to increase by 50 percent. To meet that demand, wheat yields must increase by 1.6 percent annually. Currently they are increasing by less than 1 percent annually. There is plenty of work to do to continue Borlaug’s mission of achieving food security. CGIAR Research Centers will continue to play a critical role in that effort.

The United States’ investment in CGIAR Research Programs makes a vital contribution to agricultural improvements and fosters partnerships with U.S. public research universities, international research centers, private sector partnerships and others. Partnerships with CGIAR make it possible to do the win-win collaborative wheat research that helps meet global food needs, brings tremendous economic benefits to U.S. agriculture and leverages U.S. research dollars.

We invite our stakeholders and overseas customers to learn more about this important partnership and the benefits of CGIAR wheat research in part through a fact sheet posted here on the USW website.

New CGIAR Research Portfolio tackles growing complexity of agricultural development challenges

MONTPELLIER, France (May 15, 2017) – CGIAR has launched a new portfolio of research programs designed to reduce by 150 million the number of people who do not have enough food to eat in developing nations. By transforming agricultural and food systems, the CGIAR Portfolio 2017-2022 is the second generation of CGIAR’s Research Programs and Platforms aimed at reducing rural poverty, improving food and nutrition security and improving natural resources and ecosystem services.

WHEAT Phase II Full Proposal: Your Partner Feedback

EL BATAN, Mexico (February 17, 2016)- Between 17th to 29th February 2016, the CGIAR Research Program on Wheat (WHEAT) is asking its research and development partners across the globe to provide feedback to the draft WHEAT Full Proposal for 2017-22. The Full Proposal is a research and funding plan that goes to the CGIAR Consortium and Fund Council on 31st March 2016. It includes feedback from previous partner consultations, notably the Global Partners Meeting (Istanbul, Dec 2014) and the Partner Priorities Survey (2013-14). WHEAT is very keen to get partners’ views on science content (the sections on Flagship Projects) and how WHEAT will partner in future (e.g. Partnership Strategy, sections 1.8 and 3.2).

Please access the WHEAT Phase II Full Proposal and partner feedback form here:

https://cimmyt.formstack.com/forms/wheat_phase_ii_full_proposal_partner_feedback

We are very grateful for your time and thoughts.

Sincerely,
Hans Braun, CRP Director