Posts Tagged ‘Cornell University’

Microsatellite data can help double impact of agricultural interventions

Study of smallholder wheat farmers in India shows data from small satellites can quantify and enhance yield gains

This story by Mandira Banerjee was originally posted in the University of Michigan Newsroom.

A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)

Data from microsatellites can be used to detect and double the impact of sustainable interventions in agriculture at large scales, according to a new study led by the University of Michigan (U-M).

By being able to detect the impact and target interventions to locations where they will lead to the greatest increase or yield gains, satellite data can help increase food production in a low-cost and sustainable way.

According to the team of researchers from U-M, the International Maize and Wheat Improvement Center (CIMMYT), and Stanford and Cornell universities, finding low cost ways to increase food production is critical given that feeding a growing population and increasing the yields of crops in a changing climate are some of the greatest challenges of the coming decades.

“Being able to use microsatellite data, to precisely target an intervention to the fields that would benefit the most at large scales will help us increase the efficacy of agricultural interventions,” said lead author Meha Jain, assistant professor at the U-M School for Environment and Sustainability.

Microsatellites are small, inexpensive, low-orbiting satellites that typically weigh 100 kilograms (220 pounds) or less.

“About 60-70% of total world food production comes from smallholders, and they have the largest field-level yield gaps,” said Balwinder Singh, senior researcher at CIMMYT.

To show that the low-cost microsatellite imagery can quantify and enhance yield gains, the researchers conducted their study in smallholder wheat fields in the Eastern Indo-Gangetic Plains in India.

They ran an experiment on 127 farms using a split-plot design over multiple years. In one half of the field, the farmers applied nitrogen fertilizer using hand broadcasting, the typical fertilizer spreading method in this region. In the other half of the field, the farmers applied fertilizer using a new and low-cost fertilizer spreader.

To measure the impact of the intervention, the researchers then collected the crop-cut measures of yield, where the crop is harvested and weighed in field, often considered the gold standard for measuring crop yields. They also mapped field and regional yields using microsatellite and Landsat satellite data.

Collecting the crop-cut measures of yield. Photo courtesy of: CIMMYT
Collecting the crop-cut measures of yield. Photo: CIMMYT

They found that without any increase in input, the spreader resulted in 4.5% yield gain across all fields, sites and years, closing about one-third of the existing yield gap. They also found that if they used microsatellite data to target the lowest yielding fields, they were able to double yield gains for the same intervention cost and effort.

“Being able to bring solutions to the farmers that will benefit most from them can greatly increase uptake and impact,” said David Lobell, professor of earth system science at Stanford University. “Too often, we’ve relied on blanket recommendations that only make sense for a small fraction of farmers. Hopefully, this study will generate more interest and investment in matching farmers to technologies that best suit their needs.”

The study also shows that the average profit from the gains was more than the amount of the spreader and 100% of the farmers were willing to pay for the technology again.

Women applying fertilizer via traditional method. Photo courtesy of: CIMMYT
Women applying fertilizer via traditional method. Photo: CIMMYT

Jain said that many researchers are working on finding ways to close yield gaps and increase the production of low-yielding regions.

“A tool like satellite data that is scalable and low cost and can be applied across regions to map and increase yields of crops at large scale,” she said.

Read the full study:
The impact of agricultural interventions can be doubled by using satellite data

The study is published in the October issue of Nature Sustainability. Other researchers include Amit Srivastava and Shishpal Poonia of the International Maize and Wheat Improvement Center in New Delhi; Preeti Rao and Jennifer Blesh of the U-M School of Environment and Sustainability; Andrew McDonald of Cornell; and George Azzari and David Lobell of Stanford. 

Gender equality champion wins Borlaug award for ag research

This story by Matt Hayes was originally posted on the Cornell Chronicle website.

Hale Ann Tufan, adjunct assistant professor in the College of Agriculture and Life Sciences and co-director of Gender-responsive Researchers Equipped for Agricultural Transformation.

Hale Ann Tufan, a leading advocate for gender equality as a central tenet of crop improvement, has won the 2019 Norman E. Borlaug Award for Field Research and Application.

Tufan is a veteran of the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat (WHEAT), serving as assistant wheat breeder at the CIMMYT Winter Wheat Improvement Program in Turkey.

The award, given by the World Food Prize, is the premier recognition for agricultural scientists younger than 40.

Tufan, co-director of Gender-responsive Researchers Equipped for Agricultural Transformation (GREAT) and adjunct assistant professor in the College of Agriculture and Life Sciences (CALS), was recognized for championing gender-supportive activities within the global agricultural research community. Her advocacy across disciplines has shifted crop improvement and agriculture research to include all people and genders.

“To effectively confront global hunger, all voices must be heard and valued, regardless of gender, age, race, ethnicity and ability,” said Tufan. “Norman Borlaug believed in the power of human ingenuity to solve our greatest challenges, and his dedication reshaped the world. I am humbled to receive this award named in his honor.”

She will receive the award Oct. 16 at a ceremony in Des Moines, Iowa.

By drawing attention to how gender issues can impact crop breeding, Tufan’s work is benefiting men and women farmers and making communities healthier and more productive. The GREAT project, funded by the Bill & Melinda Gates Foundation, increases opportunities for equitable participation and the sharing of benefits from agricultural research, and improves outcomes for smallholder female farmers, entrepreneurs and farmer organizations across sub-Saharan Africa. Researchers from 18 countries and 22 institutions have been trained through GREAT courses since 2016.

“Hale is committed to the vision to transform plant breeding globally and especially in African national agricultural research organizations,” said Margaret Mangheni, co-director of the GREAT project and associate professor of agricultural extension education at Makerere University in Uganda. “Under the GREAT project, the drive is to build a critical mass of scientists who are able to conduct gender-responsive research and transform agricultural systems. The GREAT model is innovative, challenging conventional modes of research and gender training – and is Hale’s brainchild.”

Tufan has championed the creation of a more gender-supportive academic, research and work environment. She has emerged as a leading voice for incorporating gender internationally and at Cornell. In March, she received a Cook Award for her work improving the campus climate for women.

“The world is waking up to a long-neglected truth: that global hunger cannot be adequately addressed when gender is ignored,” said Kathryn J. Boor ’80, the Ronald P. Lynch Dean of CALS. “Dr. Hale Ann Tufan is a young scientific leader ringing the alarm bell for this cause.”

In 2012, Tufan joined International Programs in CALS to manage the Next Generation Cassava Breeding (NextGen) project. There she designed and led an initiative to reach female smallholder farmers in Uganda and Nigeria to better understand the gender needs and impacts in these communities. Her work with national agricultural research centers in Africa helped to mainstream and prioritize end-user preferences into breeding program design and implementation.

In 2018, she assumed a new role at NextGen, heading up the Survey Division with the aim of identifying traits preferred by farmers to ensure that NextGen cassava breeding is demand-driven and inclusive.

The World Food Prize lauded Tufan for shaping new ways of thinking about agricultural science to create a more equitable society for all.

“By continuing Norman Borlaug’s legacy,” Tufan said, “we can ensure that men, women, boys and girls all equally benefit in the fight to end hunger.”

Global group of journalists find wheat research, comradery in Canada

WHEAT media sponsorship connects scientists and reporters at international wheat conference

by Marcia MacNeil

WHEAT Sponsored journalists with farmer Merle Rugg, Elstow, Saskatchewan. Photo: Amit Bhattacharya

A diverse group of agriculture, food security, environment and science journalists gathered in Saskatoon, Canada recently for an intensive course in innovative wheat research, interviews with top international scientists and networking with peers.

The occasion was the International Wheat Congress (IWC), which convened more than 900 wheat scientists and researchers in Saskatoon, in Canada’s biggest wheat-growing province, Saskatchewan, to discuss their latest work to boost wheat productivity, resilience and nutrition.

The seven journalists were part of a group of 11 who won a competitive sponsorship offered by the CGIAR Research Program on Wheat (WHEAT).  Seven journalists attended the conference, while another four followed the proceedings and activities from home.  The 10-day immersive training included multiple daily press briefings with top scientists in climate change modeling and resilience testing, innovative breeding techniques, analysis and protection of wheat diversity and many more topics, on top of a full schedule of scientific presentations. 

“The scientists were so eager to talk to us, and patient with our many questions,” said Nkechi Isaac from the Leadership newspaper group in Nigeria. “Even the director general of CIMMYT spoke with us for almost an hour.”

“It was a pleasant surprise for me.”

Martin Kropff, director general of CIMMYT, and Hans Braun, director of the CGIAR Research Program on Wheat, speak to the sponsored journalists. Photo: Marcia MacNeil/CIMMYT

The journalists, who come from regions as diverse as sub-Saharan Africa and East Asia,  offered support and encouragement from their travel preparations though their time in Saskatoon and beyond – sharing story ideas, interview and site visit opportunities, news clips and photos through a What’sApp group.

 “It is really helpful to be connected to colleagues around the world,” said Amit Bhattacharya of the Times of India. “I know we will continue to be a resource and network for each other through our careers.”

Linda McCandless of Cornell University and David Hodson of CIMMYT were among panelists sharing tips on wheat news coverage at the IWC journalist round table. Photo: Matt Hayes/Cornell

The week wasn’t all interviews and note-taking. The journalists were able to experience Saskatchewan culture, from a tour of a wheat quality lab and a First Nations dance performance to a visit to a local wheat farm, and even an opportunity to see Saskatoon’s newest modern art gallery.

The media sponsorship at IWC aimed to encourage informed coverage of the importance of wheat research, especially for farmers and consumers in the Global South, where wheat is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 a day.

The group also spoke with members of the many coalitions that facilitate the collaboration that makes innovative wheat research possible, including the International Wheat Yield Partnership, the Heat and Drought Wheat Improvement Consortium and the G20-organized Wheat Initiative.

“This is the first time we’ve invested this heavily in journalist training,” said WHEAT program director Hans Braun. “We think the benefits – for the journalists, who gained a greater understanding of wheat research issues, and for developing country audiences, who will be more aware of the importance of improving wheat –– are worth it.”

Tom Payne from CIMMYT and Maricelis Acevedo from Cornell University discuss conserving wheat diversity. Photo: Marcia MacNeil/CIMMYT

A roundtable discussion with peers from Canadian news organizations and seasoned science communications professionals and a networking breakfast with CIMMYT scientists provided platforms for a candid exchange on the challenges and opportunities in communicating wheat science in the media.

A common refrain was the importance of building relationships between scientists and media professionals – because wheat science offers dramatic stories for news audiences, and an informed and interested public can in turn lead to greater public investment in wheat science.  The journalists and scientists in Saskatoon have laid a solid foundation for these relationships.

Lominda Afedraru from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist round table. Photo: Marcia MacNeil/CIMMYT

The sponsored journalists are:

Amit Bhattacharya: Senior Editor at The Times of India, New Delhi, and a member of the team that produces the front page of India’s largest English daily. He writes on Indian agriculture, climate change, the monsoon, weather, wildlife and science. A 26-year professional journalist in India, he is a Jefferson Fellow on climate change at the East-West Center, Hawaii.

Emmanuelle Landais: Freelance journalist based in Dakar, Senegal, currently reporting for Deutsche Welle’s radio service in English and French on the environment, technology, development and youth in Africa. A former line producer for France 24 in Paris and senior environment reporter for the daily national English newspaper Gulf News in Dubai, she also reports on current affairs for the Africalink news program, contributes to Radio France International’s (RFI) English service, and serves as news producer for the Dakar-based West Africa Democracy Radio. 

Julien Chongwang: Deputy Editor, SciDev.Net French edition. He is based in Douala, Cameroon, where he has been a journalist since 2002. Formerly the editor of the The Daily Economy, he worked on the French edition of Voice of America and Morocco economic daily LES ECO, and writes for Forbes Africa, the French edition of Forbes in the United States.

Lominda Afedraru: Science correspondent at the Daily Monitor newspaper, Uganda, part of the Nation Media Group.  A journalist since 2004, she also freelances for publications in the United States, UK, Kenya and Nigeria among others and has received fellowships at the World Federation of Science Journalists, Biosciences for Farming in Africa courtesy of University of Cambridge UK and Environmental Journalism Reporting at Sauti University, Tanzania.

Muhammad Amin Ahmed: Senior Correspondent, Daily Dawn in Islamabad, Pakistan. He has been a journalist for more than 40 years. Past experience includes working at the United Nations in New York and Pakistan Press International. He received a UN-21 Award from former U.N. Secretary General Kofi Annan (2003).

Muhammad Irtaza: Special Correspondent with Pakistan’s English daily The Nation at Multan. A 10-year veteran journalist and an alumnus of the Reuters Foundation, he also worked as a reporter with the Evansville Courier and Press in Indiana, United States. He is an ICFJ-WHO Safety 2018 Fellow (Bangkok), Asia Europe Foundation Fellow (Brussels), and a U.S.-Pakistan Professional Partnership in Journalism Program Fellow (Washington). He teaches mass communications at Bahauddin Zakariya University Multan.

Nkechi Isaac: Deputy Editor, Leadership Friday in Nigeria. She is also the head, Science and Technology Desk of the Leadership Group Limited, publishers of LEADERSHIP newspapers headquartered in Abuja, Nigeria. She is a Fellow of Cornell University’s Alliance for Science.

Reaz Ahmad: Executive Editor of the Dhaka Tribune, Bangladesh’s national English newspaper. A journalist for 30 years, he is a Cochran Fellow of the U.S. Department of Agriculture and an adjunct professor of University of Dhaka (DU) and Independent University, Bangladesh.

Rehab Abdalmohsen: Freelance science journalist based in Cairo, Egypt who has covered science, health and environment for 10 years for such websites as the Arabic version of Scientific American, SciDev.net, and The Niles.

Tan Yihong: Executive Deputy Editor-in-Chief, High-Tech & Commercialization Magazine, China. Since 2008, she has written about science particularly agriculture innovation and wheat science. She has attended several Borlaug Global Rust Initiative (BGRI) Technical Workshops. In Beijing, she helped organize a BGRI communication workshop and media outreach.

Tony Iyare: Senior Correspondent, Nigerian Democratic Report.  For more than 30 years, he has covered environment, international relations, gender, media and public communication. He has worked as a stringer for The New York Times since 1992, and freelanced for the Paris-based magazine, The African Report and the U.N. Development Programme publication Choices. He was columnist at The Punch and co-authored a book: The 11-Day Siege: Gains and Challenges of Women’s Non-Violent Struggles in Niger Delta.

Journalist Nkechi Isaac from Nigeria tours a Saskatchewan wheat farm. Photo: Julie Mollins

Wheat expert calls for global unity to avert future hunger crises

Adapted from original blog by Matt Hayes on the website of the Borlaug Global Rust Initiative (BGRI)

Maricelis Acevedo (left), associate director of science for Delivering Genetic Gains in Wheat and Ronnie Coffman (right), international professor of plant breeding and director of International Programs in the Cornell University College of Agriculture and Life Sciences. (Photo: L. McCandless/Cornell) 

A global alliance of countries and research institutions committed to sharing plant genetic material , including the International Maize and Wheat Improvement Center (CIMMYT) and Cornell University, has secured food access for billions of people, but a patchwork of legal restrictions threatens humanity’s ability to feed a growing global population.

That jeopardizes decades of hard-won food security gains, according to Ronnie Coffman, international professor of plant breeding and director of International Programs in the Cornell University College of Agriculture and Life Sciences (IP-CALS).

“Global food security depends on the free movement and open sharing of plant genetic resources,” Coffman said July 23 at the International Wheat Congress in Saskatoon, Saskatchewan. “Without a strong commitment to scientific exchange in support of global plant breeding efforts, we risk our ability to respond to current food crises and to protect future generations.”

Effective plant breeding programs depend on the exchange of seeds, pathogens, and plant genetic material – known as germplasm – between and among countries. Coordination among plant pathologists and breeders forms a symbiotic partnership as plant and disease specimens collected in countries around the world are sent to research institutions to be analyzed and tested. Those findings in turn inform the breeding of improved, location-specific crop varieties that are resistant to disease and adapted to increasingly unpredictable environmental conditions.

The Convention on Biological Diversity gives countries sovereign rights over their own biological resources. The multilateral treaty, signed in 1993, allows each state to draw up its own regulations. An update known as the Nagoya Protocol, ratified in 2014, has subjected plant breeders and the seed industry to increased legal wrangling. Some countries are particularly draconian in their enforcement, and without a universal legal framework, the uneven standards threaten to undermine scientific exchange, Coffman said.

He argued that current regulations bring international lawyers, accountants and bankers with little to no background in plant breeding onto the playing field of crop improvement to act as referees. The patchwork of laws and norms, which have grown increasingly complicated in recent years, hampers scientific advancement and ultimately harms the farmers who depend on improved crops.

Coffman called for an overhaul of international laws that regulate the sharing of plant genetic resources, and for plant scientists to advocate to protect the unimpeded exchange of material and knowledge.

“It takes an international community of scientists and genetic resources to fight pathogens like stem rust that do not respect international boundaries,” he said. “Stringent regulations and country-specific control are stifling the germplasm exchanges critical to agriculture and horticulture.”

The CGIAR system — and CIMMYT and ICARDA (International Center for Agricultural Research in the Dry Areas) in particular — are the conservators of enormous gene banks of germplasm. Those resources have been essential in improving many crops to fight biotic and abiotic stresses.

“Germplasm exchange and information sharing is paramount for global wheat improvement as they are the basis for much of the progress made,” said Hans Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat. “Going forward, we must protect open access and exchange because the value of germplasm resources in national and international gene banks can only be realized when they are shared and used.”

Hunger and malnutrition cause 9 million deaths globally per year, a number that could skyrocket without an international effort to respond in unison. Annual global losses to crops like wheat could be devastating in the absence of germplasm and effective breeding programs.

Since 2008, the Cornell-led Borlaug Global Rust Initiative has spearheaded efforts to combat threats to global wheat production. There are now approximately 215 million hectares of wheat under cultivation worldwide, most of it genetically susceptible to one or more races of newly identified stem rust and yellow rust pathogens. Highly virulent races of rust pathogens can easily reduce yields by 10% or more. The 1953 rust epidemic in North America resulted in average yield losses of 40% across U.S. and Canadian spring wheat growing areas.  

As one part of its efforts to reduce the world’s vulnerability to wheat diseases, the Cornell-led Delivering Genetic Gain in Wheat (DGGW) project – funded by the Bill & Melinda Gates Foundation and UK Aid from the British people – collects samples of plant pathogens such as stem rust and yellow rust from 40 countries and analyzes them in biosafety testing labs in Minnesota, Denmark, Canada, Turkey, Ethiopia, Kenya and India.

Exchanging germplasm has allowed the DGGW project to take multiple approaches to achieving long-lasting resilience, from conventional breeding, to marker assisted selection and high-end basic science explorations. DGGW and its forerunner, the Durable Rust Resistance in Wheat project, have, since 2008, released more than 169 wheat varieties with increased yields and improved disease resistance in 11 at-risk countries, helping to improve smallholder farmers’ food security and livelihoods.

The DGGW relies on exchanges of germplasm and rust samples across international borders, and the project has encountered increased regulation in recent years, said Maricelis Acevedo, associate director of science for the DGGW and adjunct associate professor of plant pathology at Cornell.

“It takes an international community of scientists and genetic resources to fight pathogens like stem rust that know no international boundaries,” Acevedo said. “We must continue to protect — and use — those resources in our quest for global food security.”

Protecting the World’s Wheat – Delivering Genetic Gain in Kenya

In February 2019 filmmaker Chris Knight of International Programs at Cornell University’s College of Agriculture and Life Sciences visited the Kenya Agricultural and Livestock Research Organization – Food Crops Research Institute (KALRO – FCRI) research station in Njoro, Kenya.  Wanting to visually capture how Cornell is working with CIMMYT and a global partnership of more than 25 countries to protect the world’s wheat from diseases and the stress of climate change, he produced the short film Protecting the World’s Wheat – Delivering Genetic Gain in Kenya .

The film features East Africa, a center of genetic diversity for wheat stem rust, a fungal pathogen that causes significant yield losses worldwide. To combat this, partner countries test more than 50,000 experimental wheat lines against stem rust in Kenya every year at the Njoro research station to ensure that newly released wheat varieties will be resistant to emerging virulent races of the stem rust fungus as they evolve and spread.

Farmers and scientists have been fighting stem rust since the domestication of wheat thousands of years ago. This brilliant dance between humans and nature will likely never stop, but by working together we can stay one step ahead of this pesky pathogen. As Ruth Wanyera, Principal Research Scientist at KALRO stated, “(Stem rust) is running, and we’re also running. It’s running, and we’re also running. We have to do something to make sure there’s food in the table. That is where my motivation is. Let’s do something. Let’s feed the world. Let there be food for people to eat, or for people to survive.”

Q&A with Mandeep Randhawa, CIMMYT wheat rust expert at Njoro Platform, Kenya

Photo Credit: Chris Knight, Cornell University

As a part of a global network to combat the Ug99 race of wheat stem rust, the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Cornell University and the Kenya Agricultural and Livestock Research Organization (KALRO), established a stem rust phenotyping platform in Njoro, Kenya in 2008.

Under the aegis of the Durable Rust Resistance in Wheat (DRRW) project and with support from the Bill & Melinda Gates Foundation, the platform evaluates the resistance of germplasm against Ug99 from 25 to 30 countries around the world.

Mandeep Randhawa — a wheat breeder and geneticist — joined CIMMYT’s Global Wheat Program in 2015 and took responsibility as manager of the Njoro wheat stem rust phenotyping platform in 2017.

In the following Q&A —  based on an interview with Chris Knight of Cornell University’s Borlaug Global Rust Initiative — Mandeep talks about his role and his thoughts on global wheat production and the fight against Ug99.

Q: Could you describe the significance of the work that goes on here to global wheat production and global food security with respect to wheat?

A: CIMMYT has a global mandate to serve developing countries in terms of developing new wheat and maize varieties. Under the CIMMYT-Kenya shuttle breeding program, seed of about 2000 segregated populations are imported and evaluated against stem rust races for two seasons in Njoro, and spikes from resistant plants of each cross are selected, harvested and threshed together. Then, seed from each cross is shipped back to Obregon [the Campo Experimental Norman E. Borlaug in Obregon, Mexico].

In Obregon, CIMMYT selects for resistance against leaf rust and stem rust diseases using the local rust races. Plants are selected in Obregon and about 90,000 to 100,000 plants harvested. After grain selection, 40,000 to 50,000 small plots are grown in other testing sites in Mexico where another round of selections are made. About 10,000 lines undergo first year yield trials in Obregon, and are tested for stem rust resistance here in Kenya for two seasons.

After combining data from the various test sites with the stem rust score from Kenya, the top performing lines (about 10%) undergo second year yield tests in Obregon.

These high-yielding lines are distributed internationally to our national partners, and are available to the public for use in breeding program for release as potential varieties.  

I believe that it is helpful to develop new varieties with higher yield to benefit mankind.

Q: Twenty years have now passed since Ug99 was first identified. One way to frame the story is how high the stakes were at the time. If we didn’t have this screening platform, if we hadn’t come together around trying to fight Ug99, what would have happened to global wheat production?

This is a good question. We have done so much for the last 10 years using this platform. We are developing high-yielding lines that are rust resistant, which are benefiting not only the world’s wheat community, but will eventually benefit the farmer and help raise global wheat production. If we had not acted at the right time, we would not be able to know the effect of these emerging races and how they’re evolving and affecting the world of our wheat. If we didn’t have proper surveillance on rusts, we wouldn’t be able to know what types of stem rust races are evolving.

If we did not have this platform, we would see wheat varieties simply killed by stem rust and we wouldn’t have enough resources to tackle it today.

Now we are at a place where several Ug99-resistant genes have been identified – they are very useful in the breeding programs.

There are two types of resistance. One is race specific resistance and another is race non-specific resistance. If you deploy race specific resistance, there is always the fear that these genes will be rendered ineffective because of the evolution of new races. It has been seen in East Africa with the wheat varieties Robin and Digelu that were rendered susceptible with the emergence of virulent strains of wheat stem rust pathogen. To avoid sudden breakdown of resistance, we at CIMMYT are working to identify, characterize and combine race non-specific type of rust resistance sources. Race non-specific resistance is considered more durable. At least four to five genes need to be combined in one cultivar to have a stronger immunity or resistance.

Q: Let’s talk a little bit about the future. We’ve made a lot of progress, we’ve developed this platform, we brought a community of more than 25 countries together to work on this problem. What do we need to do in the next 20 years?

Stem rust was considered a disease prevalent in warmer environments, but now we can see that races have also evolved in Europe, which means that stem rust is adapting to cooler climates. In the near future, or in the next 20 years, I think we have to continue testing wheat germplasm at this platform to develop high-yielding rust resistant varieties that can be released in different countries, which will be helpful to the global wheat community. And globally speaking, it will be helpful to increase our wheat production.

Q: That’s really exciting. Thinking about the number of wheat lines that are screened here, how many wheat lines are screened here every year, and how many countries do we serve?

When the platform initially formed, my predecessors struggled a lot. It was very hard to plant wheat here. Now we have progressed in the last ten years to reach a level that we can test about 25,000 lines in one season. We have two seasons here in Kenya: one is the off-season starting from January to April/May, and then the main season starts from June and goes to the end of October. During these two seasons, about 50,000 lines per year can be tested at this platform. About 25 to 30 countries are benefitting by testing their germplasm here.

Q: We not only need to cultivate the wheat, we need to cultivate the next generation of scientists. So can you talk about the trainings that are run here on a regular basis? People from all over the world come here to learn about rust pathology and wheat breeding, right?

In the last 10 years, we have been implementing capacity building where young scientists are coming to attend a stem rust training course every year, in September and October. Every year we train about 20 to 30 young scientists from national programs in East Africa, South Asia, the Middle East and South America. Every year Dr. Bob McIntosh — he’s a living legend, an encyclopedia of rust resistance – comes over to Njoro to give field demonstrations, teach new technologies, how we can work together, how you can evaluate rust in the field and in the greenhouse. And in addition, a team of scientists from CIMMYT, ICARDA and Cornell University have been coming to provide lectures on genetics and breeding for rust resistance and rust surveys every year for the last 10 years. We have trained more than 200 scientists.

Q: Do you have a final word of motivation for all of the collaborators around the world who are supporting and helping together to achieve these goals?

We have seen in the last two decades of work here that rust never sleeps, as Dr. Norman Borlaug said. It continues to evolve, and the different races keep on moving around and tend to survive on wheat without any resistance. Not only in east Africa: you can see the stem rust is already in Europe – in Sicily, in Germany and the UK. And there is a risk to South Asia as well, as the wind is blowing toward the bread wheat producing area there. If stem rust reaches there, it can cause a huge loss to global wheat production.

So, I request that countries’ national agriculture research systems contact us: me or Ruth Wanyera, the wheat rust pathologist in KALRO  if they want to test or evaluate their material at this platform. We are more than happy to evaluate the germplasm from any country.

Mandeep can be reached at m.randhawa@cgiar.org

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

By Mike Listman

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell Universitythe Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Young women scientists who will galvanize global wheat research

By Laura Strugnell and Mike Listman

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award pose in front of the statue of the late Nobel Peace laureate, Dr. Norman E. Borlaug. Included in the photo are Amor Yahyaoui, CIMMYT wheat training coordinator (far left), Jeanie Borlaug Laube (center, blue blouse), and Maricelis Acevedo, Associate Director for Science, the Delivering Genetic Gain in Wheat Project (to the right of Jeanie Borlaug Laube). Photo: CIMMYT/Mike Listman

CIUDAD OBREGÓN, Mexico (CIMMYT) – As more than 200 wheat science and food specialists from 34 countries gathered in northwestern Mexico to address threats to global nutrition and food security, 9 outstanding young women wheat scientists among them showed that this effort will be strengthened by diversity.

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award joined an on-going wheat research training course organized by the International Maize and Wheat Improvement Center (CIMMYT), 21-23 March.

“As my father used to say, you are the future,” said Jeanie Borlaug Laube, daughter of the late Nobel Peace Prize laureate, Dr. Norman E. Borlaug, and mentor of many young agricultural scientists. Speaking to the WIT recipients, she said, “You are ahead of the game compared to other scientists your age.”

Established in 2010 as part of the Delivering Genetic Gain in Wheat (DGGW) project led by Cornell University, the WIT program has provided professional development opportunities for 44 young women researchers in wheat from more than 20 countries.

The award is given annually to as many as five early science-career women, ranging from advanced undergraduates to recent doctoral graduates and postdoctoral fellows. Selection is based on a scientific abstract and statement of intent, along with evidence of commitment to agricultural development and leadership potential.

Women who will change their professions and the world

Weizhen Liu. Photo: WIT files

Weizhen Liu, a 2017 WIT recipient and postdoctoral researcher at Cornell University, is applying genome-wide association mapping and DNA marker technology to enhance genetic resistance in tetraploid and bread wheat to stripe rust, a major global disease of wheat that is quickly spreading and becoming more virulent.

“I am eager to join and devote myself to improving wheat yields by fighting wheat rusts,” said Liu, who received her bachelors in biotechnology from Nanjing Agricultural University, China, in 2011, and a doctorate from Washington State University in 2016. “Through WIT, I can share my research with other scientists, receive professional feedback, and build international collaboration.”

Mitaly Bansal, a 2016 WIT award winner, currently works as a Research Associate at Punjab Agricultural University, India. She did her PhD research in a collaborative project involving Punjab Agricultural University and the John Innes Centre, UK, to deploy stripe and leaf rust resistance genes from non-progenitor wild wheat in commercial cultivars.

Mitaly Bansal. Photo: WIT files

“I would like to work someday in a position of public policy in India,” said Bansal, who received the Monsanto Beachell-Borlaug scholarship in 2013. “That is where I could have the influence to change things that needed changing.”

Networking in the cradle of wheat’s “Green Revolution”

In addition to joining CIMMYT training for a week, WIT recipients will attend the annual Borlaug Global Rust Initiative (BGRI) technical workshop, to be held this year in Marrakech, Morocco, from 14 to 17 April, and where the 2018 WIT winners will be announced.

The CIMMYT training sessions took place at the Norman Borlaug Experiment Station (CENEB), an irrigated desert location in Sonora State, northwestern Mexico, and coincided with CIMMYT’s 2018 “Visitors’ Week,” which took place from 19 to 23 March.

An annual gathering organized by the CIMMYT global wheat program at CENEB, Visitors’ Week typically draws hundreds of experts from the worldwide wheat research and development community. Participants share innovations and news on critical issues, such as the rising threat of the rust diseases or changing climates in key wheat farmlands.

Through her interaction with Visitors’ Week peers, Liu said she was impressed by the extensive partnering among experts from so many countries. “I realized that one of the most important things to fight world hunger is collaboration; no one can solve food insecurity, malnutrition, and climate change issues all by himself.”

A strong proponent and practitioner of collaboration, Norman E. Borlaug worked with Sonora farmers in the 1940-50s as part of a joint Rockefeller Foundation-Mexican government program that, among other outputs, generated high-yielding, disease-resistant wheat varieties. After bringing wheat self-sufficiency to Mexico, the varieties were adopted in South Asia and beyond in the 1960-70s, dramatically boosting yields and allowing famine-prone countries to feed their rapidly-expanding populations.

This became known as the Green Revolution and, in 1970, Borlaug received the Nobel Peace Prize in recognition of his contributions. Borlaug subsequently led CIMMYT wheat research until his retirement in 1979 and served afterwards as a special consultant to the Center.

When a new, highly virulent race of wheat stem rust, Ug99, emerged in eastern Africa in the early 2000s, Borlaug sounded the alarm and championed a global response that grew into the BGRI and associated initiatives such as DGGW.

“This is just a beginning for you, but it doesn’t end here,” said Maricelis Acevedo, a former WIT recipient who went on to become the leader of DGGW. Speaking during the training course, she observed that many WIT awardees come from settings where women often lack access to higher education or the freedom to pursue a career.

“Through WIT activities, including training courses like this and events such as Visitors’ Week and the BGRI workshop,” Acevedo added, “you’ll gain essential knowledge and skills but you’ll also learn leadership and the personal confidence to speak out, as well as the ability to interact one-on-one with leaders in your field and to ask the right questions.”

CIMMYT is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives generous support from national governments, foundations, development banks and other public and private agencies.

Funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under UK aid, the DGGW project aims to strengthen the delivery pipeline for new, disease resistant, climate-resilient wheat varieties and to increase the yields of smallholder wheat farmers.