Posts Tagged ‘DGGW’

Hans Braun receives prestigious Norman Borlaug Award for Lifetime Achievement in Wheat Research

Oct. 12, 2020

This story is based on a piece posted on the Borlaug Global Rust Initiative’s (BGRI) blog written by Linda McCandless. View the original post here.

The BGRI community honors four individuals who have been integral to the BGRI from the beginning. Photo: BGRI

Hans Braun, the director of the Global Wheat Program (GWP) at the International Maize and Wheat Improvement Center (CIMMYT), has received the Norman Borlaug Lifetime Achievement Award at the 2020 Borlaug Global Rust Initiative (BGRI) Technical Workshop on Oct. 9, for nearly four decades of wheat research.

“We rest on the shoulders of a lot of mighty people who have come before us,” said Ronnie Coffman, vice chair of BGRI, speaking to a global audience of wheat scientists and farmers at the Technical Workshop as he presented four individuals with the award. “Each of these individuals has contributed to the improvement of wheat and smallholder livelihoods in major and enduring ways.”

Responsible for technical direction and implementation of the GWP and CGIAR Research Program on Wheat (WHEAT), Hans Braun leads and manages a team of 40 internationally recruited scientists who develop wheat germplasm. This germplasm is distributed to around 200 cooperators in wheat producing countries worldwide, and is responsible for the derived varieties being grown on more than 50 percent of the spring wheat area in developing countries.

Lifetime achievement

“In his 35 years with CIMMYT, Hans has become familiar with all major wheat-based cropping systems in the developing and developed world,” said Coffman, who called Hans Braun an important collaborator and close personal friend.

“Hans was integral to the BGRI’s efforts in preventing Ug99 and related races of rust from taking out much of the 80% of the world’s wheat that was susceptible when Ug99 was first identified in 1999,” said Coffman. He “has been an integral partner in the development and implementation of the Durable Rust Research in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects.”

At the virtual BGRI workshop, Hans delivered a keynote speech accepting the award and discussing the bright future of wheat, despite the many challenges that lie ahead.

“The future of wheat improvement in developing countries remains on the shoulders of public organizations and institutions. It is paramount that we share germplasm, information and knowledge openly,” he said.

Hans Braun has dedicated nearly four decades to wheat research. Photo: BGRI

He emphasized the need to “keep the herd together” and maintain strong, global partnerships.

He also noted the importance of continuing to improve nutritional content, growing within planetary boundaries, and taking farmers’ preferences seriously. He highlighted CIMMYT’s exceptional capacity as one of the world’s largest and most impactful wheat breeding programs, and encouraged national partners to continue their close collaboration.

He recalled what Norman Borlaug told him in 2004, when he became head of the Global Wheat Program: “‘Hans, I have confidence you can lead the program and I will always help you’ – and how he did.”

“I would like to thank all with whom I cooperated over four decades and who contributed to make CIMMYT’s program strong,” concluded Hans. “I am very optimistic that the global wheat community will continue to develop the varieties farmers need to feed 10 billion.”

Read the original article, learn more about the other highly distinguished scientists receiving this high honor, and access the entire workshop outcomes on the BGRI website.


Publication summary: Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields

A new quantitative genetics study makes a strong case for the yield testing strategies the International Maize and Wheat Improvement Center (CIMMYT) uses in its wheat breeding program.

Wheat fields at CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón. Photo: CIMMYT.

The process for breeding for grain yield in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at an experimental station in the desert environment of Ciudad Obregón, in Mexico’s Yaqui Valley. Because the conditions in Obregón are extremely favorable, CIMMYT wheat breeders are able to replicate growing environments all over the world, and test the yield potential and climate-resilience of wheat varieties for every major global wheat growing area. These replicated test areas in Obregón are known as selection environments (SEs).

This process has its roots in the innovative work of wheat breeder and Nobel Prize winner Norman Borlaug, more than 50 years ago.  Wheat scientists at CIMMYT, led by wheat breeder Philomin Juliana, wanted to see if it remained effective.

The scientists conducted a large quantitative genetics study comparing the grain yield performance of lines in the Obregón SEs with that of lines in target growing sites throughout the world. They based their comparison on data from two major wheat trials: the South Asia Bread Wheat Genomic Prediction Yield Trials in India, Pakistan and Bangladesh initiated by the U.S. Agency for International Development Feed the Future initiative, and the global testing environments of the Elite Spring Wheat Yield Trials.

The findings, published in Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields, in Frontiers in Plant Science, found that the Obregón yield testing process in different SEs is very efficient in developing high-yielding and resilient wheat lines for target sites.

The authors found higher average heritabilities, or trait variations due to genetic differences, for grain yield in the Obregón SEs than in the target sites (44.2 and 92.3% higher for the South Asia and global trials, respectively), indicating greater precision in the SE trials than those in the target sites.   They also observed significant genetic correlations between one or more SEs in Obregón and all five South Asian sites, as well as with the majority (65.1%) of the Elite Spring Wheat Yield Trial sites. Lastly, they found a high ratio of selection response by selecting for grain yield in the SEs of Obregón than directly in the target sites.

“The results of this study make it evident that the rigorous multi-year yield testing in Obregón environments has helped to develop wheat lines that have wide-adaptability across diverse geographical locations and resilience to environmental variations,” said Philomin Juliana, CIMMYT associate scientist and lead author of the article.

“This is particularly important for smallholder farmers in developing countries growing wheat on less than 2 hectares who cannot afford crop losses due to year-to-year environmental changes.”

In addition to these comparisons, the scientists conducted genomic prediction for grain yield in the target sites, based on the performance of the same lines in the SEs of Obregón. They found high year-to-year variations in grain yield predictabilities, highlighting the importance of multi-environment testing across time and space to stave off the environment-induced uncertainties in wheat yields.

“While our results demonstrate the challenges involved in genomic prediction of grain yield in future unknown environments, it also opens up new horizons for further exciting research on designing genomic selection-driven breeding for wheat grain yield,” said Juliana. 

This type of quantitative genetics analysis using multi-year and multi-site grain yield data is one of the first steps to assessing the effectiveness of CIMMYT’s current grain yield testing and making recommendations for improvement—a key objective of the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, which aims to accelerate the breeding progress by optimizing current breeding schemes.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future initiative; and several collaborating national partners who generated the grain yield data.

Read the full article here: https://doi.org/10.3389/fpls.2020.580136

New genetic analysis advances the global quest for yellow rust resistant wheat

A wheat leaf infected with yellow rust, also known as stripe rust. Photo: Thomas Lumpkin/CIMMYT

Yellow rust, also known as stripe rust, is a tenacious and widespread fungal disease that threatens wheat all over the world. The fungal pathogen that causes the rust — Puccinia striiformis — is prevalent in more than 60 countries, and an estimated 88% of the world’s wheat production is considered vulnerable, with up to 100% losses. 

A number of factors – including favorable weather conditions, the adaptation of existing races and emergence of new ones, and a changing climate – have caused a recent uptick in severe outbreaks. Farmers can use fungicides and farming management practices to battle the fungus, but sowing resistant seeds is widely considered as the most cost-effective, environmentally-safe and sustainable way to beat it.

A new analysis by wheat scientists at the International Maize and Wheat Improvement Center (CIMMYT) published in Scientific Reports provides valuable insights and a deep resource of genetic information to increase the speed and accuracy of efforts to breed yellow rust resistant wheat.

To understand the shared genetic basis of yellow rust resistance over time and in three geographic regions, CIMMYT scientists performed a large genome-wide association study leveraging a dataset of 43,706 observations on 23,346 wheat lines evaluated between 2013 and 2019 at sites in India, Kenya and Mexico.

Photo: Flickr/ Wheat Genetics Lab

They found more than 100 repeatable –that is, statistically significant in multiple datasets — genome-wide markers associated with yellow rust that aligned to the reference genome of wheat.

 “These findings represent a significant advancement in our knowledge about the genetics of yellow rust resistance in bread wheat and provide exciting opportunities for designing future genomics-based breeding strategies for tackling yellow rust,” said CIMMYT wheat scientist Philomin Juliana, the lead author of the paper.

CIMMYT wheat scientists have been breeding for yellow rust resistance since the early 1970s. Breeding for resistance is a painstaking process involving crossing parents with slow rusting genes, selecting early-generation plants which exhibit resistance in Toluca, Mexico, and then subjecting the advanced generations to intense screening in sites like Karnal (in collaboration with the Indian Institute of Wheat and Barley Research) and Ludhiana (in collaboration with the Borlaug Institute for South Asia) in India; Njoro in Kenya; and Celaya (in collaboration with the Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias), El Batan and Toluca in Mexico. Identifying genes related to resistance can increase the efficiency of this selection process, giving breeders a head start by allowing them to begin the crossing process with varieties that are more likely to have resistance genes.

In the study, the wheat scientists also conducted “allelic fingerprinting” on the largest panel of wheat breeding lines to date — 52,067 lines, genomically characterizing them for yellow rust resistance.  The resulting data creates opportunities using molecular markers to identify varieties with desired combinations of resistance genes.

“This information advances our knowledge on the genetics of yellow rust resistance in thousands of wheat lines, and has important implications for the future design of resistant crosses and varieties,” Juliana said.

Overall, the markers and fingerprints identified in this study are a valuable resource not only for CIMMYT breeders but also for the global wheat breeding community in its efforts to accelerate yellow rust resistance breeding.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK  Department for International Development (DFID) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future Initiative; and the genotyping support of Dr. Jesse Poland from the innovation lab at Kansas State University.

Read the full article here:
https://doi.org/10.1038/s41598-020-67874-x

Juliana, P., Singh, R.P., Huerta-Espino, J. et al. 2020. “Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico.” Nature Scientific Reports.

BGRI-led coalition protects world’s wheat crop

This story by Matt Hayes was originally published on the Borlaug Global Rust Initiative website.

When a novel strain of a wheat pathogen first emerged in East Africa in 1998, Norman Borlaug knew the world faced a dire threat to food security.

The virulent race of stem rust that became known as Ug99 was deadly to nearly all wheat varieties, threatening to cause epidemic losses in wheat fields around the globe. To combat the disease, the Borlaug and a team of committed scientists at Cornell, CIMMYT, ICARDA, FAO and other organizations sounded the global alarm in 2005. Those pioneers launched the Borlaug Global Rust Initiative (BGRI) to protect the global wheat supply against the spread of Ug99 and other challenges.

In a keynote speech delivered June 25 during the BGRI’s second virtual workshop, Ronnie Coffman, vice-chair of the BGRI, described those early efforts and the long-running scientific work to combat wheat disease.

The virtual “Take It to the Farmer” event featured videos and discussion with farmers and experts from around the wheat-growing world. Six wheat growers from five countries focused on the challenges they face — Felix Austin of F1 Seed in the UK, Hajo Mergo from Ethiopia, Deviprasad Aryal and Ramchandra Adhikari from Nepal, Esther Chelule from Kenya, Gurjeet Singh Mann from India, and Jesús Larraguibel Artola from Mexico. While wheat panelists discussed possible solutions  — Bill Angus from Angus Wheat in the UK; Hans Braun from CIMMYT, in Mexico; Anne Cichangi from KALRO, in Kenya; Bedada Girma, from EIAR, Ethiopia; Chhavi Tiwari from Shri Vaishnav Institute of Agriculture in India, and Vijay Vijayaraghavan from Sathguru Management Consultants in India.

According to Coffman, the world averted disaster thanks to the coordinated global effort led by Cornell’s BGRI with more than $100 million in funding for the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects from the Bill & Melinda Gates Foundation and UK aid from the British people.

The BGRI and the projects it managed was essential to protecting one of the world’s most important crops, according to Coffman.

Crucial outcomes from the DRRW and DGGW projects noted by Coffman include vast increases in land area planted to rust-resistant varieties, global expansion of a wheat pathogen surveillance network, more young wheat scientists in countries around the world — especially women — trained to be wheat breeders, pathologists, gender experts and project leaders, and the establishment of a global wheat community dedicated to the improvement of one of the world’s most important crops.

“For 12 years, through the DRRW and the DGGW projects, the BGRI has focused on delivering rust-resistant varieties of wheat to the farmers around the world who depend on agriculture and wheat production for their livelihoods,” said Coffman. “We have been especially dedicated to smallholder farmers in wheat-producing countries in Africa and Asia. Men and women who do not always have the access to new technologies — like improved seed — that they need.”

During the past 12 years, BGRI scientists have released more than 270 new varieties of wheat with greater resistance to diseases and environmental stresses such as climate change, working with national programs in 11 at-risk countries.

“These varieties have contributed enormously to improving the livelihoods of the farmers who adopted them,” Coffman said.

Maricelis Acevedo, associate director for science for DGGW, said that the successes were only possible by building a network of global researchers working in tandem with farmers on a common goal to secure the world’s wheat.

“Science and agriculture are forever linked in our enduring quest to feed the world,” Acevedo said. “The BGRI is committed to making sure scientific innovations help the world’s farmers prosper.”

One element of those efforts is robust surveillance of wheat pathogens. To track the spread of rust and other diseases, the BGRI expanded the international monitoring network from two countries in 2007 to 43 today. By utilizing precise location tagging equipment and mobile devices, “our partners now operate the world’s largest international crop disease monitoring system in the world,” said Coffman.

Mobile plant disease diagnostic technologies allow researchers to identify individual strains of complex fungal pathogens directly in the field, making it easier for farmers to quell outbreaks quickly. 

The projects also helped establish facilities needed to monitor and respond to diseases. Investments in greenhouses, irrigation systems, laboratories, field equipment and communications technology gave global partners the tools needed to collaborate with other wheat scientists around the world to breed more rust resistant wheat, and help farmers stay ahead of epidemics caused by evolving races of rust. At nursery facilities built in Ethiopia and Kenya, scientists are able to test elite wheat varieties from national wheat breeding programs around the world against various strains of rust.  

Long-term sustainability and durability depend on knowledgeable and dedicated scientists, according to Coffman. Since 2008, more than 1000 wheat scientists from countries around the world have been trained with funding from the projects, Coffman said.

“As we move forward, to 2030 and beyond, we must rededicate ourselves to understanding farmers’ needs because they are the ultimate beneficiaries of our work,” said Coffman.

“We will continue to build this coalition of great scientists committed to the big, big task of increasing food security one wheat field at a time,” said Acevedo, in her closing remarks.

The next BGRI Virtual Workshop will take place in October.

Watch Take It to the Farmer: https://www.youtube.com/watch?v=PSOdFDZUZrY&feature=youtu.be

Wheat expert calls for global unity to avert future hunger crises

Adapted from original blog by Matt Hayes on the website of the Borlaug Global Rust Initiative (BGRI)

Maricelis Acevedo (left), associate director of science for Delivering Genetic Gains in Wheat and Ronnie Coffman (right), international professor of plant breeding and director of International Programs in the Cornell University College of Agriculture and Life Sciences. (Photo: L. McCandless/Cornell) 

A global alliance of countries and research institutions committed to sharing plant genetic material , including the International Maize and Wheat Improvement Center (CIMMYT) and Cornell University, has secured food access for billions of people, but a patchwork of legal restrictions threatens humanity’s ability to feed a growing global population.

That jeopardizes decades of hard-won food security gains, according to Ronnie Coffman, international professor of plant breeding and director of International Programs in the Cornell University College of Agriculture and Life Sciences (IP-CALS).

“Global food security depends on the free movement and open sharing of plant genetic resources,” Coffman said July 23 at the International Wheat Congress in Saskatoon, Saskatchewan. “Without a strong commitment to scientific exchange in support of global plant breeding efforts, we risk our ability to respond to current food crises and to protect future generations.”

Effective plant breeding programs depend on the exchange of seeds, pathogens, and plant genetic material – known as germplasm – between and among countries. Coordination among plant pathologists and breeders forms a symbiotic partnership as plant and disease specimens collected in countries around the world are sent to research institutions to be analyzed and tested. Those findings in turn inform the breeding of improved, location-specific crop varieties that are resistant to disease and adapted to increasingly unpredictable environmental conditions.

The Convention on Biological Diversity gives countries sovereign rights over their own biological resources. The multilateral treaty, signed in 1993, allows each state to draw up its own regulations. An update known as the Nagoya Protocol, ratified in 2014, has subjected plant breeders and the seed industry to increased legal wrangling. Some countries are particularly draconian in their enforcement, and without a universal legal framework, the uneven standards threaten to undermine scientific exchange, Coffman said.

He argued that current regulations bring international lawyers, accountants and bankers with little to no background in plant breeding onto the playing field of crop improvement to act as referees. The patchwork of laws and norms, which have grown increasingly complicated in recent years, hampers scientific advancement and ultimately harms the farmers who depend on improved crops.

Coffman called for an overhaul of international laws that regulate the sharing of plant genetic resources, and for plant scientists to advocate to protect the unimpeded exchange of material and knowledge.

“It takes an international community of scientists and genetic resources to fight pathogens like stem rust that do not respect international boundaries,” he said. “Stringent regulations and country-specific control are stifling the germplasm exchanges critical to agriculture and horticulture.”

The CGIAR system — and CIMMYT and ICARDA (International Center for Agricultural Research in the Dry Areas) in particular — are the conservators of enormous gene banks of germplasm. Those resources have been essential in improving many crops to fight biotic and abiotic stresses.

“Germplasm exchange and information sharing is paramount for global wheat improvement as they are the basis for much of the progress made,” said Hans Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat. “Going forward, we must protect open access and exchange because the value of germplasm resources in national and international gene banks can only be realized when they are shared and used.”

Hunger and malnutrition cause 9 million deaths globally per year, a number that could skyrocket without an international effort to respond in unison. Annual global losses to crops like wheat could be devastating in the absence of germplasm and effective breeding programs.

Since 2008, the Cornell-led Borlaug Global Rust Initiative has spearheaded efforts to combat threats to global wheat production. There are now approximately 215 million hectares of wheat under cultivation worldwide, most of it genetically susceptible to one or more races of newly identified stem rust and yellow rust pathogens. Highly virulent races of rust pathogens can easily reduce yields by 10% or more. The 1953 rust epidemic in North America resulted in average yield losses of 40% across U.S. and Canadian spring wheat growing areas.  

As one part of its efforts to reduce the world’s vulnerability to wheat diseases, the Cornell-led Delivering Genetic Gain in Wheat (DGGW) project – funded by the Bill & Melinda Gates Foundation and UK Aid from the British people – collects samples of plant pathogens such as stem rust and yellow rust from 40 countries and analyzes them in biosafety testing labs in Minnesota, Denmark, Canada, Turkey, Ethiopia, Kenya and India.

Exchanging germplasm has allowed the DGGW project to take multiple approaches to achieving long-lasting resilience, from conventional breeding, to marker assisted selection and high-end basic science explorations. DGGW and its forerunner, the Durable Rust Resistance in Wheat project, have, since 2008, released more than 169 wheat varieties with increased yields and improved disease resistance in 11 at-risk countries, helping to improve smallholder farmers’ food security and livelihoods.

The DGGW relies on exchanges of germplasm and rust samples across international borders, and the project has encountered increased regulation in recent years, said Maricelis Acevedo, associate director of science for the DGGW and adjunct associate professor of plant pathology at Cornell.

“It takes an international community of scientists and genetic resources to fight pathogens like stem rust that know no international boundaries,” Acevedo said. “We must continue to protect — and use — those resources in our quest for global food security.”

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

By Mike Listman

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell Universitythe Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Cornell receives UK support to aid scientists fighting threats to global wheat supply

By Linda McCandless/Cornell University

ITHACA, New York (January 25,2017)- Cornell University will receive $10.5 million in UK aid investment from the British people to help an international consortium of plant breeders, pathologists and surveillance experts overcome diseases hindering global food security efforts.

The funds for the four-year Delivering Genetic Gain in Wheat, or DGGW, project will build on a $24 million grant from the Bill & Melinda Gates Foundation, announced in March 2016, and bring the total to $34.5 million.