Posts Tagged ‘Ethiopia’

CIMMYT is ready to support Ethiopia’s move toward — and beyond — wheat self-sufficiency

This article by Simret Yasabu was originally posted on the CIMMYT website.

Ethiopia, 2017. Photographer: ILRI/ Apollo Habtamu.

Ethiopia has huge potential and a suitable agroecology for growing wheat. However, its agriculture sector, dominated by a traditional farming system, is unable to meet the rising demand for wheat from increasing population and urbanization. Wheat consumption in Ethiopia has grown to 6.7 million tons per year, but the country only produces about 5 million tons per year on 1.7 million hectares. As a result, the country pays a huge import bill reaching up to $700 million per year to match supply with demand.

A new initiative is aiming to change this scenario, making Ethiopia wheat self-sufficient by opening new regions to wheat production.

“We have always been traditionally a wheat growing country, but focusing only in the highlands with heavy dependence on rain. Now that is changing and the government of Ethiopia has set a new direction for import substitution by growing wheat in the lowlands through an irrigated production system,” explained Mandefro Nigussie, director general of the Ethiopian Institute of Agricultural Research (EIAR). Nigussie explained that several areas are being considered for this initiative: Awash, in the Oromia and Afar regions; Wabeshebelle, in the Somali Region; and Omo, in the Southern Nations, Nationalities and Peoples Region (SNNPR).

A delegation from the International Maize and Wheat Improvement Center (CIMMYT) recently met Ethiopian researchers and policymakers to discuss CIMMYT’s role in this effort. Ethiopia’s new Minister of Agriculture and Natural Resources, Umar Hussein, attended the meeting.

“We understand that the government of Ethiopia has set an ambitious project but is serious about it, so CIMMYT is ready to support you,” said Hans Braun, director of the Global Wheat Program at CIMMYT.

Hans Braun (center), director of CIMMYT’s Global Wheat Program, speaks at the meeting. (Photo: Simret Yasabu/CIMMYT)
Hans Braun (center), director of CIMMYT’s Global Wheat Program, speaks at the meeting. (Photo: Simret Yasabu/CIMMYT)

Strong collaboration

CIMMYT and the Ethiopian government have identified priority areas that will support the new government initiative. These include testing a large number of advanced lines to identify the right variety for the lowlands; developing disease resistant varieties and multiplying good quality and large quantity early generation initial seed; refining appropriate agronomic practices that improve crop, land and water productivity; organizing exposure visits for farmers and entrepreneurs; implementing training of trainers and researchers; and technical backstopping.

CIMMYT has been providing technical support and resources for wheat and maize production in Ethiopia for decades. As part of this support, CIMMYT has developed lines that are resistant to diseases like stem and yellow rust, stress tolerant and suitable for different wheat agroecologies.

“This year, for example, CIMMYT has developed three lines which are suitable for the lowlands and proposed to be released,” said Bekele Abeyo, wheat breeder and CIMMYT Country Representative for Ethiopia. “In India, the green revolution wouldn’t have happened without the support of CIMMYT and we would also like to see that happen in Ethiopia.”

“With our experience, knowledge and acquired skills, there is much to offer from the CIMMYT side,” Abeyo expressed. He noted that mechanization is one of the areas in which CIMMYT excels. Through a business service providers model, CIMMYT and its partners tested the multipurpose two-wheel tractors in Oromia, Amhara, Tigray and the southern regions. Good evidence for impact was generated particularly in Oromia and the south, where service providers generated income and ensured food security.

“Import versus export depends on a comparative advantage and for Ethiopia it is a total disadvantage to import wheat while having the potential [to grow more],” said Hussein. “The Ministry of Agriculture is thus figuring out what it can do together with partners like CIMMYT on comparative advantages.”

Hussein explained that the private sector has always been on the sidelines when it comes to agriculture. With the new initiative, however, it will be involved, particularly in the lowlands where there is abundant land for development under irrigation and available water resources, with enormous investment potential for the private sector. This, he noted, is a huge shift for the agricultural sector, which was mainly taken care of by the government and smallholder farmers, with support from development partners.

Ethiopia’s Minister of Agriculture, Umar Hussein, speaks about the new initiative. (Photo: Simret Yasabu/CIMMYT)
Ethiopia’s Minister of Agriculture, Umar Hussein, speaks about the new initiative. (Photo: Simret Yasabu/CIMMYT)

Thinking beyond the local market

As it stands now, Ethiopia is the third largest wheat producing country in Africa and has great market potential for the region. With more production anticipated under the new initiative, Ethiopia plans to expand its market to the world.

“We want our partners to understand that our thinking and plan is not only to support the country but also to contribute to the global effort of food security,” Hussein explained. However, “with the current farming system this is totally impossible,” he added. Mechanization is one of the key drivers to increase labor, land and crop productivity by saving time and ensuring quality. The government is putting forward some incentives for easy import of machinery. “However, it requires support in terms of technical expertise and knowledge transfer,” Hussein concluded.

Smallholder farmers’ multi-front strategy combats rapidly evolving wheat rust in Ethiopia

Researchers found farmers who increased both the area growing resistant varieties and the number of wheat varieties grown per season saw the biggest yield increases.

This story by  Simret Yasabu was originally posted on CIMMYT.org.

New research shows that smallholder farmers in Ethiopia used various coping mechanisms apart from fungicides in response to the recent wheat rust epidemics in the country. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR) call for continuous support to research and extension programs to develop and disseminate improved wheat varieties with resistant traits to old and newly emerging rust races.

Rising wheat yields cannot catch up rising demand

Wheat is the fourth largest food crop in Ethiopia cultivated by smallholders, after teff, maize and sorghum. Ethiopia is the largest wheat producer in sub-Saharan Africa and average farm yields have more than doubled in the past two decades, reaching 2.74 tons per hectare on average in 2017/18. Farmers who use improved wheat varieties together with recommended agronomic practices recorded 4 to 6 tons per hectare in high-potential wheat growing areas such as the Arsi and Bale zones. Yet the country remains a net importer because demand for wheat is rapidly rising.

The Ethiopian government has targeted wheat self-sufficiency by 2023 and the country has huge production potential due to its various favorable agroecologies for wheat production.

However, one major challenge to boosting wheat production and yields is farmers’ vulnerability to rapidly evolving wheat diseases like wheat rusts.

The Ethiopian highlands have long been known as hot spots for stem and yellow wheat rusts caused by the fungus Puccinia spp., which can spread easily under favorable climatic conditions. Such threats may grow with a changing climate.

Ethiopian wheat planting. (Photo: CIMMYT)

Recurrent outbreaks of the two rusts destroyed significant areas of popular wheat varieties. In 2010, a yellow rust epidemic severely affected the popular Kubsa variety. In 2013/14, farmers in the Arsi and Bale zones saw a new stem rust race destroy entire fields of the bread wheat Digalu variety.

In response to the 2010 yellow rust outbreak, the government and non-government organizations, seed enterprises and other development supporters increased the supply of yellow rust resistant varieties like Kakaba and Danda’a.

Fungicide is not the only solution for wheat smallholder farmers

Two household panel surveys during the 2009/10 main cropping season, before the yellow rust epidemic, and during the 2013/14 cropping season analyzed farmers’ exposure to wheat rusts and their coping mechanisms. From the survey, 44% of the wheat farming families reported yellow rust in their fields during the 2010/11 epidemic.

Household data analysis looked at the correlation between household characteristics, their coping strategies against wheat rust and farm yields. The study revealed there was a 29 to 41% yield advantage by increasing wheat area of the new, resistant varieties even under normal seasons with minimum rust occurrence in the field. Continuous varietal development in responding to emerging new rust races and supporting the deployment of newly released rust resistant varieties could help smallholders cope against the disease and maintain improved yields in the rust prone environments of Ethiopia.

The case study showed that apart from using fungicides, increasing wheat area under yellow rust resistant varieties, increasing diversity of wheat varieties grown, or a combination of these strategies were the main coping mechanisms farmers had taken to prevent new rust damages. Large-scale replacement of highly susceptible varieties by new rust resistant varieties was observed after the 2010/11 epidemic.

The most significant wheat grain yield increases were observed for farmers who increased both area under resistant varieties and number of wheat varieties grown per season.

The additional yield gain thanks to the large-scale adoption of yellow rust resistant varieties observed after the 2010/11 epidemic makes a very strong case to further strengthen wheat research and extension investments, so that more Ethiopian farmers have access to improved wheat varieties resistant to old and newly emerging rust races.

Read the full study on PLOS ONE:
https://doi.org/10.1371/journal.pone.0219327

MARPLE team awarded for international impact

Research team behind a revolutionary field test for wheat disease wins prestigious BBSRC prize

International Impact winners Diane Saunders and Dave Hodson with Malcolm Skingle, director of Academic Liaison, GlaxoSmithKline and Melanie Welham, executive chair of BBSRC. Photo ©BBSRC

The research team behind the MARPLE (Mobile And Real-time PLant disEase) diagnostic kit won the international impact category of the annual Innovator of the Year Awards sponsored by the UK Biotechnology and Biological Sciences Research Council (BBSRC).

The team — Diane Saunders of the John Innes Centre (JIC), Dave Hodson of the International Maize and Wheat Improvement Center (CIMMYT) and Tadessa Daba of the Ethiopian Institute of Agricultural Research (EIAR) — was presented with the award at a high-profile event at the London Science Museum on 15 May 2019 before an audience of leading figures from the worlds of investment, industry, government, charity and academia, including Chris Skidmore MP, Minister of State for Universities, Science, Research and Innovation.

The BBSRC Innovator of the Year awards, now in their 11th year, recognize and support individuals or teams who have taken discoveries in bioscience and translated them to deliver impact. Reflecting the breadth of research that BBSRC supports, they are awarded in four categories of impact: commercial, societal, international and early career.

Diane Saunders of John Innes Centre and Dave Hodson of CIMMYT pose with the MARPLE diagnostics kit. Credit: JIC

As finalists in the international impact category, Saunders, Hodson and Daba were among a select group of 12 finalists competing for the prestigious Innovator of the Year 2019 award. In addition to international recognition, they received a £10,000 award.

“I am delighted that this work has been recognized,” said Hodson. “Wheat rusts are a global threat to agriculture, and to the livelihoods of farmers in developing countries such as Ethiopia. MARPLE diagnostics puts state of the art, rapid diagnostic results in the hands of those best placed to respond: researchers on the ground, local government and farmers.”

MARPLE diagnostics is the first operational system in the world using nanopore sequence technology for rapid diagnostics and surveillance of complex fungal pathogens in the field.

In its initial work in Ethiopia, the suitcase-sized field test kit has positioned the country, among the region’s top wheat producers, as a world leader in pathogen diagnostics and forecasting. Generating results within 48 hours of field sampling, the kit represents a revolution in plant disease diagnostics with far-reaching implications for how plant health threats are identified and tracked into the future.

The MARPLE mobile lab in Ethiopia. Credit: JIC

MARPLE is designed to run at a field site without constant electricity and with the varying temperatures of the field.

“This means we can truly take the lab to the field,” explained Saunders. “Perhaps more importantly though, it means that smaller, less resourced labs can drive their own research without having to rely on a handful of large, well-resourced labs and sophisticated expertise in different countries.”

In a recent interview with JIC, EIAR Director Tadessa Daba said, “We want to see this project being used on the ground, to show farmers and the nation this technology works.”



Development of the MARPLE diagnostic kit was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the CGIAR Platform for Big Data in Agriculture Inspire Challenge. Continued support is also provided by the BBSRC Excellence with Impact Award to the John Innes Centre and the Delivering Genetic Gain in Wheat project led by Cornell University International Programs that is funded by the UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation.

More information on the JIC-CIMMYT-EIAR team’s BBSRC recognition can be found on the JIC website, the BBSRC website and the website of the CGIAR Research Program on Wheat.

Women’s equality crucial for Ethiopia’s agricultural productivity and wheat self-sufficiency goals

This op-ed by CIMMYT researchers Kristie Drucza and Mulunesh Tsegaye  was originally published in the Ethiopian newspaper The Reporter .

A farmer stacking harvested wheat Dodola district, Ethiopia. Photo: CIMMYT/P. Lowe

The Government of Ethiopia recently announced an ambitious goal to reach wheat self-sufficiency by 2022, eliminating expensive wheat imports and increasing food security.

However, a new report based on a four-year research project on gender and productivity in Ethiopia’s wheat sector indicates that a lack of technical gender research capacity, a shortage of gender researchers and low implementation of gender-focused policies is hampering these efforts.

Gender equality is crucial for agricultural productivity. Women head a quarter of rural households in Ethiopia. However, faced with low or no wages, limited access to credit and constrained access to land and other resources, they produce 23 percent less per hectare than men. Women in male-headed households have even more limitations, as gender norms often exclude them from community power structures, extension services and technical programs. According to the World Bank, a failure to recognize the roles, differences and inequities between men and women poses a serious threat to the effectiveness of Ethiopia’s agricultural development agenda.

The good news is the Government of Ethiopia has taken positive steps towards encouraging gender equality, with agriculture leading the way. Prime Minister Abiy Ahmed signaled his commitment to strengthening Ethiopia’s gender equality by appointing women to 50 percent of his cabinet and appointing the country’s first female president, defense minister and chief justice. The government’s Gender Equality Strategy for Ethiopia’s Agriculture Sector is a welcome improvement on past agriculture policies, and its latest Wheat Sector Development Strategy focuses on promoting women´s participation in extension and training programs. Under the leadership of Director General Mandefro Nigussie, the Ethiopian Institute of Agricultural Research (EIAR) has drafted a strategy for gender mainstreaming, developed gender guidelines and recruited 100 new female scientists, constituting the highest percentage of women researchers in its history.

However, according to our research, there is a clear gap between policies and actions. Women living in male-headed households face different constraints from those in female-headed households, yet very little data exists on them. Ethiopia’s wheat strategy and other policies do not have sex-disaggregated indicators and targets. Women are seen as a homogeneous category in policy, meaning that certain groups of women miss out on assistance.

To strengthen women’s role in the agriculture sector, more internal reflection on gender and learning is required across institutions and organizations. Our new report offers a full list of recommendations for the research, policy and donor communities. Among other suggestions, we recommend that:
• the research sector move beyond surveying household heads and use diverse research methods to understand systems within farming households;
• the education ministry develop a Gender in Agriculture specialization at a national university to make progress filling the existing gaps in expertise and that
• donors invest more in gender-related agriculture research.

Ethiopia has taken great strides towards recognizing the important role of women in agricultural productivity. If it wants to become self-sufficient in wheat—and meet the sustainable development goals (SDGs)—it must make the extra effort to follow through with these efforts. At this critical time, the country cannot afford to ignore women’s needs.

The “Understanding Gender in Wheat-based Livelihoods for Enhanced WHEAT R4D Impact” project ran from 2014 to 2018 and sought to improve the focus on gender and social equity in wheat-related research and development in Ethiopia, Pakistan and Afghanistan. In Ethiopia, the project included analysis of literature and gender policies, a stakeholder analysis of government and non-government actors, qualitative research with 275 male and female farmers and a gender audit and capacity assessment of EIAR. 

This research was made possible by the generous financial support of BMZ — the Federal Ministry for Economic Cooperation and Development, Germany. 

Q&A with Dave Hodson on MARPLE and Big Data

CIMMYT’s Dave Hodson taking wheat rust samples with Ethiopian farmers. Photo credit: John Innes Centre

The MARPLE (Mobile And Real-time PLant disease) project – a project to test and pilot a revolutionary mobile lab in Ethiopia, led by the John Innes Centre, the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR)—won the CGIAR Platform for Big Data in Agriculture Inspire Challenge Scale Up award in 2018.

The Inspire Challenge encourages CGIAR partners, universities and others to use big data approaches through innovative pilot projects to advance agricultural research and development. To be named a winner, projects must have real potential for developmental impact, have mobilized underused or misused data, and demonstrate meaningful partnerships with CGIAR and other sector members. Ultimately, the Inspire Challenge looks for novel approaches to inform policies and applications in agriculture and food security.

We sat down with CIMMYT Principal Scientist and rust pathologist Dave Hodson to ask him about the project and its relationship with Big Data for Agriculture.

What is the significance of Big Data to your work?
Advances in sequencing technology, and the use of innovative big data approaches on sequence data from thousands of yellow rust isolates, opened the door for Diane Saunders and colleagues at the John Innes Centre in the UK to develop revolutionary, near-real time, mobile pathogen diagnostic techniques using portable palm-sized gene sequencers. The final result being the first operational system in the world using nanopore sequence technology for rapid diagnostics and surveillance of complex fungal pathogens in situ.

How do you see the role of the CGIAR Platform for Big Data in Agriculture in your work?
Support from the CGIAR Big Data Platform was critical to establish the partnership between John Innes, the Ethiopian Institute of Agricultural Research (EIAR) and CIMMYT and enable piloting and testing of the new MARPLE diagnostic platform in Ethiopia. The choice of Ethiopia to be the first country for initial testing was based on several key factors. Firstly, a strong national partner in EIAR; secondly, the critical importance of wheat and wheat rust diseases in the country. Ethiopia is the largest wheat producer in sub-Saharan Africa, but it is also considered the gateway for new wheat rust strains entering into Africa from Asia. All these factors made Ethiopia the highest priority country to take the lead in testing this revolutionary new and rapid pathogen diagnostics platform.

How did it impact this MARPLE project?
The pilot and subsequent scale-up project from the CGIAR Big Data Platform has enabled in-country capacity to be developed, and cutting edge technology for rapid pathogen diagnostics to be deployed in the front-line in the battle against devastating wheat rust diseases. The scientific innovation in developing the MARPLE platform, coupled to the suitability of the technology for developing country partners has now attracted support and interest from other donors. Matching funds were recently obtained for the scale -up phase of MARPLE from the Delivering Genetic Gain in Wheat project (implemented by Cornell University and funded by the Bill and Melinda Gates Foundation and the UK Department for International Development). This scale-up phase of the project will see a set of distributed MARPLE hubs established and embedded within the Ethiopian wheat research system – resulting in a sentinel system for the rapid detection of new yellow rust races that is unparalleled anywhere in the world. The scientific breakthrough in developing rapid diagnostics for complex fungal pathogens using nanopore sequencing will permit the development of similar systems for other important fungal diseases in the future.

The MARPLE project was selected as a 2017 winner, with the team receiving 100,000 USD to put their ideas into practice. The team came runners up for the Scale Up award the following year, receiving an additional USD 125,000 for their outstanding ability to demonstrate the project’s proven viability and potential for impact.

A wheat self-sufficiency roadmap for Ethiopia’s future

Mechanization could boost Ethiopian wheat production and provide youth with new job opportunities. (Photo: Gerardo Mejía/CIMMYT)

This blog by Jérôme Bousset was originally posted on CIMMYT.org.

The Ethiopian government announced recently that the country should become wheat self-sufficient over the next four years. Why is boosting domestic wheat production important for this country in the Horn of Africa, and could wheat self-sufficiency be attained in the next four years? The Ethiopian Institute for Agricultural Research (EIAR), with the support of International Maize and Wheat Improvement Center (CIMMYT), gathered agriculture and food experts from the government, research and private sectors on November 23, 2018, to draw the first outlines of this new Ethiopian wheat initiative.

The low-tech domestic wheat farming and price support issue

Despite a record harvest of 4.6 million metric tons in 2017, Ethiopia imported 1.5 million tons of wheat the same year, costing US$600 million. Population growth, continuous economic growth and urbanization over the last decade has led to a rapid change in Ethiopian diets, and the wheat sector cannot keep up with the growing demand for pasta, dabo, ambasha and other Ethiopian breads.

The majority of Ethiopia’s 4.2 million wheat farmers cultivate this cereal on an average of 1.2-hectare holdings, with three quarters produced in Arsi, Bale and Shewa regions. Most prepare the land and sow with draft animal power equipment and few inputs, dependent on erratic rainfall without complementary irrigation. Yields have doubled over the last 15 years and reached 2.7 tons per hectare according to the latest agricultural statistics, but are still far from the yield potential.

According to data from the International Food Policy Research Institute (IFPRI), wheat is preferred by wealthier, urban families, who consume 33 percent more wheat than rural households. Ethiopia needs to rethink its wheat price support system, which does not incentivize farmers and benefits mostly the wealthier, urban consumers. Wheat price support subsidies could, for instance, target bakeries located in poor neighborhoods.

 

Ethiopia’s Minister of Agriculture and Natural Resources, Eyasu Abraha, welcomes conference participants. (Photo: Jérôme Bossuet/CIMMYT)

Where to start to boost wheat productivity?

Ethiopia, especially in the highlands, has an optimum environment to grow wheat. But to make significant gains, the wheat sector needs to identify what limiting factors to address first. The Wheat initiative, led by Ethiopia’s Agricultural Transformation Agency (ATA), has targeted 2,000 progressive farmers across 41 woredas (districts) between 2013 and 2018, to promote the use of improved and recommended inputs and better cropping techniques within their communities. A recent IFPRI impact study showed a 14 percent yield increase, almost enough to substitute wheat imports if scaled up across the country. It is, however, far from the doubling of yields expected initially. The study shows that innovations like row planting were not widely adopted because of the additional labor required.

Hans Braun, WHEAT CGIAR research program and CIMMYT’s Global Wheat Program director, believes Ethiopian farmers can achieve self-sufficiency if they have the right seeds, the right agronomy and the right policy support.

One priority is to increase support for wheat improvement research to make wheat farmers more resilient to new diseases and climate shocks. Drought and heat tolerance, rust resistance and high yields even in low-fertility soils are some of the factors sought by wheat farmers.

International collaboration in durum wheat breeding is urgently needed as the area under durum wheat is declining in Ethiopia due to climate change, diseases and farmers switching to more productive and resilient bread wheat varieties. Braun advises that Ethiopia set up a shuttle breeding program with CIMMYT in Mexico, as Kenya did for bread wheat, to develop high-yielding and stress-resistant varieties. Such a shuttle breeding program between Ethiopia and Mexico would quickly benefit Ethiopian durum wheat farmers, aiming at raising their yields similar to those of Mexican farmers in the state of Sonora, who harvest more than 7 tons per hectare under irrigation. This would require a policy reform to facilitate the exchange of durum germplasm between Ethiopia and Mexico, as it is not possible at the moment.

Ethiopia also needs to be equipped to respond quickly to emerging pests and diseases. Five years ago, a new stem rust (TKTTF, also called Digalu race) damaged more than 20,000 hectares of wheat in Arsi and Bale, as Digalu — the popular variety used by local farmers — was sensitive to this new strain. The MARPLE portable rust testing lab, a fast and cost-effective rust surveillance system, is now helping Ethiopian plant health authorities quickly identify new rust strains and take preventive actions to stop new outbreaks.

CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media during the conference. (Photo: Jérôme Bossuet/CIMMYT)

Invest in soil health, mechanization and gender

In addition to better access to improved seeds and recommended inputs, better agronomic practices are needed. Scaling the use of irrigation would certainly increase wheat yields, but experts warn not to dismiss adequate agronomic research — knowing the optimal water needs of the crop for each agroecological zone — and the underlying drainage system. Otherwise, farmers are at risk of losing their soils forever due to an accumulation of salt.

‘’2.5 billion tons of topsoil are lost forever every year due to erosion. A long-term plan to address soil erosion and low soil fertility should be a priority,” highlights Marco Quinones, adviser at ATA. For instance, large-scale lime application can solve the important issue of acid soils, where wheat does not perform well. But it requires several years before the soil can be reclaimed and visible yield effects can be seen.

Mechanization could also boost Ethiopian wheat production and provide youth with new job opportunities. Recent research showed smallholder farmers can benefit from six promising two-wheel tractor (2WT) technologies. Identifying the right business models and setting up adapted training programs and financial support will help the establishment of viable machinery service providers across the country.

Better gender equity will also contribute significantly to Ethiopia becoming self-sufficient in wheat production. Women farmers, especially female-headed households, do not have the same access to trainings, credit, inputs or opportunities to experiment with new techniques or seed varieties because of gender norms. Gender transformative methodologies, like community conversations, can help identify collective ways to address such inequalities, which cost over one percent of GDP every year.

‘’With one third better seeds, one third good agronomy and one third good policies, Ethiopia will be able to be wheat self-sufficient,” concluded Braun. A National Wheat Taskforce led by EIAR will start implementing a roadmap in the coming days, with the first effects expected for the next planting season in early 2019.

The consultative workshop “Wheat Self-Sufficiency in Ethiopia: Challenges and Opportunities” took place in Addis Ababa, Ethiopia, on November 23, 2018.

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

By Mike Listman

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell Universitythe Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

CIMMYT promotes gender awareness in agriculture research and development in Ethiopia

Gender awareness and gender-sensitive approaches are slowly spreading into agricultural research, extension, and policy in Ethiopia, based on recent statements from a cross section of professionals and practitioners in the country.

An initiative led by the International Maize and Wheat Improvement Center (CIMMYT) is helping to drive evidence-based approaches to foster gender equality and include it in mainstream agricultural research.

Moges Bizuneh, deputy head of the agricultural office of Basona District, attended a CIMMYT-organized workshop in which Ethiopia-specific results were presented from GENNOVATE, a large-scale qualitative study involving focus groups and interviews with more than 7,500 rural men and women in 26 developing countries. “I have learned a lot about gender and it’s not just about women, but about both women and men,” said Bizuneh.

The District of Basona has nearly 30,000 households, 98 percent of which depend on agriculture for food and livelihoods but have access to an average of only 1.5 hectares of land. More than 10,000 of those households are headed by females, because many males and youth have left Basona to seek opportunities in large cities or other countries.

Bizuneh and his colleagues are working with a district gender specialist and a women and gender unit to make gender sensitive approaches a regular part of their activities. In this, he concedes that he and other professionals are contending with “deep-rooted social and cultural norms around divisions of labor and a lack of awareness regarding gender issues.”

One surprise for Bizuneh, from group discussions regarding innovation and involvement in CIMMYT’s gender research, was that women said it was important to share experiences with other farmers and obtain new knowledge.

“No men mentioned that,” he remarked. “This shows that, if provided with information and support, women can innovate.”

Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agirculture for development professionals. Photo: CIMMYT/Apollo Habtamu

Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agriculture-for-development professionals. Photo: CIMMYT/Apollo Habtamu

Women and men plan and change together

Another product from the project is a 2017 review of gender-transformative methodologies for Ethiopia’s agriculture sector, co-authored by Kristie Drucza, project lead, and Wondimu Abebe, a research assistant, both from CIMMYT.

Drucza presented on the people-centered methodologies described in the publication at a recent workshop in Addis Ababa, offering diverse lessons of use for research and development professionals.

“The methodologies involve participatory research to help households and communities assess their situation and develop solutions to problems,” said Drucza. “By working with men and boys and allowing communities to set the pace of change, these approaches reduce the likelihood of a backlash against women—something that too frequently accompanies gender-focused programs.”

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), intends to apply some of the same methods to help rural families understand household and community gender dynamics and their role in managing the families’ goats, sheep, and other livestock.

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives

“A 2015 study we did uncovered gender relationships associated with disease transmission,” Mulema explained. “Women and girls normally clean the animal pens and so are exposed to infections. Social conventions in the community make women feel inferior and not empowered to speak out about animal health, which is considered a man’s domain. We encouraged men and women to share roles and work together, and this made it easier for both to quickly identify disease outbreaks at early stages and prevent infections from spreading throughout the herd or to humans.”

Mulema said Drucza’s workshop helped her to understand and appreciate methodologies such as social analysis and action, community conversations, and gender action learning systems to support a shared, local response to the problem. “As another outcome, we spoke to service providers, such as veterinarians and extension agents, who needed to understand how gender related to animal health and the fact that the relationships between women and men in a community can change.”

Meskerem Mulatu, gender and nutrition specialist in Ethiopia’s Agricultural Growth Program II (AGP II) Capacity Development Support Facility (CDSF), said her group invited Drucza to speak on gender and social norms at a national workshop organized by AGP II CDSF in October 2017.

“Our event was on gender, nutrition, and climate-smart agriculture,” according to Meskerem. “Many technologies are gender-sensitive but research and extension are not giving this adequate attention because there is no common operational definition. Their preconception is ‘technology is technology; it’s the same for men and women.’ Drucza’s evidence-based presentation showed that men and women may have different technology demands.”

Meskerem is going to train district agricultural officers to use a transformative methodology identified by Drucza. “Kristie’s report is really good timing,” she said. “We were thinking of doing something in terms of gender and these methodologies make sense.”

Recording data on changes in social norms

In June 2017, Drucza presented the findings of her meta-analysis of evaluations of gender in Ethiopian agricultural development at a senior staff meeting of the Ethiopia office of CARE, the global humanitarian organization. Among the 26 agricultural program evaluations considered, explained Drucza, only three had strong findings, a heavy inclusion of gender, and evidence of changes in social norms—and all three were CARE projects.

Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman

Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman

One was the Graduation with Resilience to Achieve Sustainable Development (GRAD) initiative. As an outcome of Drucza’s presentation, CARE is refining the way it records certain social data, according to Elisabeth Farmer, Deputy Chief of Party for the CARE’s Feed the Future Ethiopia–Livelihoods for Resilience Activity project, which emerged from GRAD.

“Our baseline study protocol and questionnaire for the new project hadn’t been finalized yet,” Farmer said. “We were thinking through the difference between using a scale that scores responses along a range, such as a Likert scale, versus asking respondents “yes or no”-type questions, for instance regarding women’s access to information or equitable decision-making in the household.

“As Drucza explained, when it comes to gender norms, you may not get all the way from a “no” to a “yes”, but only from a “2” to “3”, and we want to make sure that we are capturing these smaller shifts, so we incorporated scales with ranges into our baseline and will ensure that these are used in future assessments to track transformations in social norms.”

According to Drucza, who leads the CIMMYT project “Understanding gender in wheat-based livelihoods for enhanced WHEAT R4D impact in Afghanistan, Pakistan and Ethiopia,” funded by the German Federal Ministry for Economic Cooperation and Development, research must be relevant and useful.

“I’m happy to learn that our results are useful to a diverse range of actors, from development partners to policy makers and local agricultural officers,” she said.

Deadly strain of wheat stem rust disease surfaces in Europe

Scientists have shown that the first appearance of wheat stem rust disease in the U.K. in nearly 60 years, which occurred in 2013, was caused by the same virulent fungal strain responsible for recent wheat stem rust outbreaks in Ethiopia, Denmark, Germany, and Sweden.

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops. Photo: CIMMYT/Petr Kosina

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed
to the gods to avoid disease outbreaks on their wheat crops.
Photo: CIMMYT/Petr Kosina

As reported today in Communications Biology, an international team of researchers led by the John Innes Centre, U.K., found that 80 percent of U.K. wheat varieties are susceptible to the deadly stem rust strain. The group also confirmed for the first time in many decades that the stem rust fungus was growing on barberry bush, the pathogen’s alternate host, in the UK.

“This signals the rising threat of stem rust disease for wheat and barley production in Europe,” said Dave Hodson, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author on the study.

A scourge of wheat since biblical times, stem rust caused major losses to North American wheat crops in the early 20th century. Stem rust disease was controlled for decades through the use of resistant wheat varieties bred in the 1950s by scientist Norman Borlaug and his colleagues. Widespread adoption of those varieties sparked the Green Revolution of the 1960s and 70s.

In 1999 a new, highly-virulent strain of the stem rust fungus emerged in eastern Africa. Spores of that strain and variants have spread rapidly and are threatening or overcoming the genetic resistance of many currently sown wheat varieties. Scientists worldwide joined forces in the early 2000s to develop new, resistant varieties and to monitor and control outbreaks of stem rust and yellow rust, as part of collaborations such as the Borlaug Global Rust Initiative led by Cornell University.

Barberry is a shrub found throughout the temperate and subtropical regions. Photo: CIMMYT archives

Barberry is a shrub found throughout
the temperate and subtropical regions.
Photo: John Innes Centre

The Communications Biology study shows that 2013 U.K. stem rust strain is related to TKTTF, a fungal race first detected in Turkey that spread across the Middle East and recently into Europe. It was the dominant race in the 2013 stem rust outbreak in Germany and infected 10,000 hectares of wheat in Ethiopia’s breadbasket the same year.

Because disease organisms mutate quickly to overcome crop resistance controlled by single genes, researchers are rushing to identify new resistance genes and to incorporate multiple genes into high-yielding varieties, according to Ravi Singh, CIMMYT wheat scientist who participated in the reported study.

“The greatest hope for achieving durable resistance to rust diseases is to make wheat’s resistance genetically complex, combining several genes and resistance mechanisms,” Singh explained.

Barberry, which serves as a spawning ground for the stem rust fungus, was largely eradicated from the U.K. and U.S. last century, greatly reducing the spread and genetic diversification of rust disease races. Now barberry is being grown again in the U.K. over the last decade, according to Diane G.O. Saunders, John Innes Centre scientist and co-author of the study.

“The late Nobel laureate Norman Borlaug said that the greatest ally of the pathogen is our short memory,” Saunders stated. “We recommend continued, intensive resistance breeding. We would also welcome work with conservationists of endangered, barberry-dependent insect species to ensure that planting of common barberry occurs away from arable land, thus safeguarding European cereals from a large-scale re-emergence of wheat stem rust.”

Click here to read the John Innes Centre media release about the Communications Biology report and view the report.

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver over 3,400 tons of high quality seed to farmers, which was sown on more than 100,300 hectares.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Photo: Atlabtamu/CIMMYT.

Usman Kadir. Photos here and above: CIMMYT/A.Habtamu.

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates FoundationEthiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative.