Posts Tagged ‘India’

Innovative irrigation promises “more crop per drop” for India’s water-stressed cereals

A pioneering study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. (Photo: Naveen Gupta/CIMMYT)

This article by Vanessa Meadu was originally posted on March 21, 2019 on cimmyt.org.

On World Water day, researchers show how India’s farmers can beat water shortages and grow rice and wheat with 40 percent less water

India’s northwest region is the most important production area for two staple cereals: rice and wheat. But a growing population and demand for food, inefficient flood-based irrigation, and climate change are putting enormous stress on the region’s groundwater supplies. Science has now confronted this challenge: a “breakthrough” study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. The study’s authors, from the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Punjab Agricultural University and Thapar University, claim farmers can grow similar or better yields than conventional growing methods, and still make a profit.

The researchers tested a range of existing solutions to determine the optimal mix of approaches that will help farmers save water and money. They found that rice and wheat grown using a “sub-surface drip fertigation system” combined with conservation agriculture approaches used at least 40 percent less water and needed 20 percent less Nitrogen-based fertilizer, for the same amount of yields under flood irrigation, and still be cost-effective for farmers. Sub-surface drip fertigation systems involve belowground pipes that deliver precise doses of water and fertilizer directly to the plant’s root zone, avoiding evaporation from the soil. The proposed system can work for both rice and wheat crops without the need to adjust pipes between rotations, saving money and labor. But a transition to more efficient approaches will require new policies and incentives, say the authors.

During the study, researchers used a sub-surface drip fertigation system, combined with conservation agriculture approaches, on wheat fields. (Photo: Naveen Gupta/CIMMYT)

Read the full story:

Innovative irrigation system could future-proof India’s major cereals. Thomsom Reuters Foundation News, 20 March 2019.

Read the study:

Sidhu HS, Jat ML, Singh Y, Sidhu RK, Gupta N, Singh P, Singh P, Jat HS, Gerard B. 2019. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agricultural Water Management. 216:1 (273-283). https://doi.org/10.1016/j.agwat.2019.02.019

The study received funding from the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR) and the Government of Punjab. The authors acknowledge the contributions of the field staff at BISA and CIMMYT based at Ludhiana, Punjab state.

Support groups open women’s access to farm technologies in northeast India

by Dakshinamurthy Vedachalam, Sugandha Munshi / This article was originally published on the website of the International Maize and Wheat Improvement Center on March 12, 2019

In Odisha and Bihar, CSISA has leveraged the social capital of women’s self-help groups formed by the government and other civil society partners and which offer entry points for training and social mobilization, as well as access to credit. (Photo: CSISA)

Self-help groups in Bihar, India, are putting thousands of rural women in touch with agricultural innovations, including mechanization and sustainable intensification, that save time, money, and critical resources such as soil and water, benefiting households and the environment.

The Bihar Rural Livelihoods Promotion Society, locally known as Jeevika, has partnered with the Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT), to train women’s self-help groups and other stakeholders in practices such as zero tillage, early sowing of wheat, direct-seeded rice and community nurseries.

Through their efforts to date, more than 35,000 households are planting wheat earlier than was customary, with the advantage that the crop fully fills its grain before the hot weather of late spring. In addition, some 18,000 households are using zero tillage, in which they sow wheat directly into unplowed fields and residues, a practice that improves soil quality and saves water, among other benefits. As many as 5,000 households have tested non-flooded, direct-seeded rice cultivation during 2018-19, which also saves water and can reduce greenhouse gas emissions

An autonomous body under the Bihar Department of Rural Development, Jeevika is also helping women to obtain specialized equipment for zero tillage and for the mechanized transplanting of rice seedlings into paddies, which reduces women’s hard labor of hand transplanting.

“Mechanization is helping us manage our costs and judiciously use our time in farming,” says Rekha Devi, a woman farmer member of Jeevika Gulab self-help group of Beniwal Village, Jamui District. “We have learned many new techniques through our self-help group.”

With more than 100 million inhabitants and over 1,000 persons per square kilometer, Bihar is India’s most densely-populated state. Nearly 90 percent of its people live in rural areas and agriculture is the main occupation. Women in Bihar play key roles in agriculture, weeding, harvesting, threshing, and milling crops, in addition to their household chores and bearing and caring for children, but they often lack access to training, vital information, or strategic technology.

Like all farmers in South Asia, they also face risks from rising temperatures, variable rainfall, resource degradation, and financial constraints.

Jeevika has formed more than 700,000 self-help groups in Bihar, mobilizing nearly 8.4 million poor households, 25,000 village organizations, and 318 cluster-level federations in all 38 districts of Bihar.

The organization also fosters access for women to “custom-hiring” businesses, which own the specialized implement for practices such as zero tillage and will sow or perform other mechanized services for farmers at a cost. “Custom hiring centers help farmers save time in sowing, harvesting and threshing,” said Anil Kumar, Program Manager, Jeevika.

The staff training, knowledge and tools shared by CSISA have been immensely helpful in strengthening the capacity of women farmers, according to Dr. D. Balamurugan, CEO, Jeevika. “We aim to further strengthen our partnership with CSISA and accelerate our work with women farmers, improving their productivity while saving their time and costs,” Balamurugan said.

CSISA is implemented jointly by the International Maize and Wheat Improvement Center (CIMMYT), the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). It is funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID).

Assessing the effectiveness of a “wheat holiday” for preventing blast

Policy to encourage alternative crops for wheat farmers in South Asia a short-term solution at best, say CIMMYT researchers

The grain in this blast-blighted wheat head has been turned to chaff.
Photo: CKnight/ DGGW/ Cornell University

Wheat blast — one of the world’s most devastating wheat diseases — is moving swiftly into new territory in South Asia.

In an attempt to curb the spread of this disease, policymakers in the region are considering a “wheat holiday” policy: banning wheat cultivation for a few years in targeted areas. Since wheat blast’s Magnaporthe oryzae pathotype triticum (MoT) fungus can survive on seeds for up to 22 months, the idea is to replace wheat with other crops, temporarily, to cause the spores to die. In India, which shares a border of more than 4,000 km with Bangladesh, the West Bengal state government has already instituted a two-year ban on wheat cultivation in two districts, as well as all border areas. In Bangladesh, the government is implementing the policy indirectly by discouraging wheat cultivation in the severely blast affected districts.

CIMMYT researchers recently published in two ex-ante studies to identify economically feasible alternative crops in Bangladesh and the bordering Indian state of West Bengal.

Alternate crops

The first step to ensuring that a ban does not threaten the food security and livelihoods of smallholder farmers, the authors assert, is to supply farmers with economically feasible alternative crops.

In Bangladesh, the authors examined the economic feasibility of seven crops as an alternative to wheat, first in the entire country, then in 42 districts vulnerable to blast, and finally in ten districts affected by wheat blast. Considering the cost of production and revenue per hectare, the study ruled out boro rice, chickpeas and potatoes as feasible alternatives to wheat due to their negative net return. In contrast, they found that cultivation of maize, lentils, onions, and garlic could be profitable.

The study in India looked at ten crops grown under similar conditions as wheat in the state of West Bengal, examining the economic viability of each. The authors conclude that growing maize, lentils, legumes such aschickpeas and urad bean, rapeseed, mustard and potatoes in place of wheat appears to be profitable, although they warn that more rigorous research and data are needed to confirm and support this transition.

Selecting alternative crops is no easy task. Crops offered to farmers to replace wheat must be appropriate for the agroecological zone and should not require additional investments for irrigation, inputs or storage facilities. Also, the extra production of labor-intensive and export-oriented crops, such as maize in India and potatoes in Bangladesh, may add costs or require new markets for export.

There is also the added worry that the MoT fungus could survive on one of these alternative crops, thus completely negating any benefit of the “wheat holiday.” The authors point out that the fungus has been reported to survive on maize.

A short-term solution?

In both studies, the authors discourage a “wheat holiday” policy as a holistic solution. However, they leave room for governments to pursue it on an interim and short-term basis.

In the case of Bangladesh, the researchers assert that a “wheat holiday” would increase the country’s reliance on imports, especially in the face of rapidly increasing wheat demand and urbanization. A policy that results in complete dependence on wheat imports, they point out, may not be politically attractive or feasible. Also, the policy would be logistically challenging to implement. Finally, since the disease can potentially survive on other host plants, such as weeds and maize—it may not even work in the long run.

In the interim, the government of Bangladesh may still need to rely on the “wheat holiday” policy in the severely blast-affected districts. In these areas, they should encourage farmers to cultivate lentils, onions and garlic. In addition, in the short term, the government should make generic fungicides widely available at affordable prices and provide an early warning system as well as adequate information to help farmers effectively combat the disease and minimize its consequences.

In the case of West Bengal, India, similar implications apply – although the authors conclude that the “wheat holiday” policy could only work if Bangladesh has the same policy in its blast-affected border districts, which would involve potentially difficult and costly inter-country collaboration, coordination and logistics.

Actions for long-term success

The CIMMYT researchers urge the governments of India and Bangladesh, their counterparts in the region and international stakeholders to pursue long-term solutions, including developing a convenient diagnostic tool for wheat blast surveillance and a platform for open data and science to combat the fungus.

A promising development is the blast-resistant (and zinc-enriched) wheat variety BARI Gom 33 which the Bangladesh Agricultural Research Institute (BARI) released in 2017 with support from CIMMYT.However, it will take at least three to five years before it will be available to farmers throughout Bangladesh. The authors urged international donor agencies to speed up the multiplication process of this variety.

CIMMYT scientists in both studies close with an urgent plea for international financial and technical support for collaborative research on disease epidemiology and forecasting, and the development and dissemination of new wheat blast-tolerant and resistant varieties and complementary management practices – crucial steps to ensuring food security for more than a billion people in South Asia.

Read the full articles on Averting Wheat Blast by Implementing a ‘Wheat Holiday’: In Search of Alternative Crops in West Bengal, India and Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: In search of feasible crops in Bangladesh

Wheat Blast Impacts

First officially reported in Brazil in 1985, where it eventually spread to 3 million hectares in South America and became the primary reason for limited wheat production in the region, wheat blast moved to Bangladesh in 2016. There it affected nearly 15,000 hectares of land in eight districts, reducing yield by as much as 51 percent in the affected fields.

Blast is devilish: directly striking the wheat ear, it can shrivel and deform the grain in less than a week from the first symptoms, leaving farmers no time to act. There are no widely available resistant varieties, and fungicides are expensive and provide only a partial defense. The disease, caused by the fungus Magnaporthe oryzae pathotype triticum (MoT), can spread through infected seeds as well as by spores that can travel long distances in the air.

South Asia has a long tradition of wheat consumption, especially in northwest India and Pakistan, and demand has been increasing rapidly across South Asia. It is the second major staple in Bangladesh and India and the principal staple food in Pakistan. Research indicates 17 percent of wheat area in Bangladesh, India, and Pakistan — representing nearly 7 million hectares – is vulnerable to the disease, threatening the food security of more than a billion people.

CIMMYT and its partners work to mitigate wheat blast through projects supported by U.S. Agency for International Development (USAID), the Bill and Melinda Gates Foundation, the Australian Centre for International Agricultural Research (ACIAR), Indian Council for Agricultural Research (ICAR), the CGIAR Research Program on WHEAT, and the CGIAR Platform for Big Data in Agriculture.

Young women scientists who will galvanize global wheat research

By Laura Strugnell and Mike Listman

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award pose in front of the statue of the late Nobel Peace laureate, Dr. Norman E. Borlaug. Included in the photo are Amor Yahyaoui, CIMMYT wheat training coordinator (far left), Jeanie Borlaug Laube (center, blue blouse), and Maricelis Acevedo, Associate Director for Science, the Delivering Genetic Gain in Wheat Project (to the right of Jeanie Borlaug Laube). Photo: CIMMYT/Mike Listman

CIUDAD OBREGÓN, Mexico (CIMMYT) – As more than 200 wheat science and food specialists from 34 countries gathered in northwestern Mexico to address threats to global nutrition and food security, 9 outstanding young women wheat scientists among them showed that this effort will be strengthened by diversity.

Winners of the Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award joined an on-going wheat research training course organized by the International Maize and Wheat Improvement Center (CIMMYT), 21-23 March.

“As my father used to say, you are the future,” said Jeanie Borlaug Laube, daughter of the late Nobel Peace Prize laureate, Dr. Norman E. Borlaug, and mentor of many young agricultural scientists. Speaking to the WIT recipients, she said, “You are ahead of the game compared to other scientists your age.”

Established in 2010 as part of the Delivering Genetic Gain in Wheat (DGGW) project led by Cornell University, the WIT program has provided professional development opportunities for 44 young women researchers in wheat from more than 20 countries.

The award is given annually to as many as five early science-career women, ranging from advanced undergraduates to recent doctoral graduates and postdoctoral fellows. Selection is based on a scientific abstract and statement of intent, along with evidence of commitment to agricultural development and leadership potential.

Women who will change their professions and the world

Weizhen Liu. Photo: WIT files

Weizhen Liu, a 2017 WIT recipient and postdoctoral researcher at Cornell University, is applying genome-wide association mapping and DNA marker technology to enhance genetic resistance in tetraploid and bread wheat to stripe rust, a major global disease of wheat that is quickly spreading and becoming more virulent.

“I am eager to join and devote myself to improving wheat yields by fighting wheat rusts,” said Liu, who received her bachelors in biotechnology from Nanjing Agricultural University, China, in 2011, and a doctorate from Washington State University in 2016. “Through WIT, I can share my research with other scientists, receive professional feedback, and build international collaboration.”

Mitaly Bansal, a 2016 WIT award winner, currently works as a Research Associate at Punjab Agricultural University, India. She did her PhD research in a collaborative project involving Punjab Agricultural University and the John Innes Centre, UK, to deploy stripe and leaf rust resistance genes from non-progenitor wild wheat in commercial cultivars.

Mitaly Bansal. Photo: WIT files

“I would like to work someday in a position of public policy in India,” said Bansal, who received the Monsanto Beachell-Borlaug scholarship in 2013. “That is where I could have the influence to change things that needed changing.”

Networking in the cradle of wheat’s “Green Revolution”

In addition to joining CIMMYT training for a week, WIT recipients will attend the annual Borlaug Global Rust Initiative (BGRI) technical workshop, to be held this year in Marrakech, Morocco, from 14 to 17 April, and where the 2018 WIT winners will be announced.

The CIMMYT training sessions took place at the Norman Borlaug Experiment Station (CENEB), an irrigated desert location in Sonora State, northwestern Mexico, and coincided with CIMMYT’s 2018 “Visitors’ Week,” which took place from 19 to 23 March.

An annual gathering organized by the CIMMYT global wheat program at CENEB, Visitors’ Week typically draws hundreds of experts from the worldwide wheat research and development community. Participants share innovations and news on critical issues, such as the rising threat of the rust diseases or changing climates in key wheat farmlands.

Through her interaction with Visitors’ Week peers, Liu said she was impressed by the extensive partnering among experts from so many countries. “I realized that one of the most important things to fight world hunger is collaboration; no one can solve food insecurity, malnutrition, and climate change issues all by himself.”

A strong proponent and practitioner of collaboration, Norman E. Borlaug worked with Sonora farmers in the 1940-50s as part of a joint Rockefeller Foundation-Mexican government program that, among other outputs, generated high-yielding, disease-resistant wheat varieties. After bringing wheat self-sufficiency to Mexico, the varieties were adopted in South Asia and beyond in the 1960-70s, dramatically boosting yields and allowing famine-prone countries to feed their rapidly-expanding populations.

This became known as the Green Revolution and, in 1970, Borlaug received the Nobel Peace Prize in recognition of his contributions. Borlaug subsequently led CIMMYT wheat research until his retirement in 1979 and served afterwards as a special consultant to the Center.

When a new, highly virulent race of wheat stem rust, Ug99, emerged in eastern Africa in the early 2000s, Borlaug sounded the alarm and championed a global response that grew into the BGRI and associated initiatives such as DGGW.

“This is just a beginning for you, but it doesn’t end here,” said Maricelis Acevedo, a former WIT recipient who went on to become the leader of DGGW. Speaking during the training course, she observed that many WIT awardees come from settings where women often lack access to higher education or the freedom to pursue a career.

“Through WIT activities, including training courses like this and events such as Visitors’ Week and the BGRI workshop,” Acevedo added, “you’ll gain essential knowledge and skills but you’ll also learn leadership and the personal confidence to speak out, as well as the ability to interact one-on-one with leaders in your field and to ask the right questions.”

CIMMYT is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives generous support from national governments, foundations, development banks and other public and private agencies.

Funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under UK aid, the DGGW project aims to strengthen the delivery pipeline for new, disease resistant, climate-resilient wheat varieties and to increase the yields of smallholder wheat farmers.

 

CIMMYT scientist R.K. Malik wins Crawford Fund’s Derek Tribe Award for improving livelihoods of farmers in India

By Anuradha Dhar/CIMMYT

NEW DEHLI, India (April 22, 2016)-Ram Kanwar Malik, a senior agronomist in the Sustainable Intensification Program at the International Maize and Wheat Improvement Center (CIMMYT) based in Bihar, India, is the winner of the 2015 Derek Tribe Award for his outstanding contributions to making a food secure world by improving and sustaining the productivity of the rice-wheat system of the northwestern and eastern Indo-Gangetic Plains.

Zero-till Wheat Raises Farmers’ Incomes in Eastern India, Research Shows

By Anuradha Dhar/CIMMYT

NEW DEHLI, India (September 30, 2015)- Large-scale adoption of zero tillage wheat production could play a major role in making the eastern Indian state of Bihar self-sufficient in wheat, according to a new study published by CIMMYT agricultural scientists.Farmer with wheat harvest (2)

In a study published last month in Food Security, CIMMYT researchers reported that wheat farmer’s total annual income increased by 6% on average with the introduction of zero tillage (ZT) in Bihar. While studies done in the past in the eastern Indo-Gangetic Plains (IGP) have shown ZT impacts in field trials or controlled environments, this research is believed to be the first that studied actual impacts in farmers’ fields.

ZT allows direct planting of wheat without plowing, sowing seeds directly into residues of the previous crop on the soil surface, thus saving irrigation water, increasing soil organic matter and suppressing weeds.

“We found that the prevailing ZT practice, without full residue retention, used by farmers in Bihar has led to an average yield gain of 498 kilogram per hectare (19%) over conventional tillage wheat, which is in contrast to the results of a recent global meta-analysis” says Alwin Keil, Senior Agricultural Economist, CIMMYT and the lead author of this study.

The global meta-analysis published last year compared crop yields in ZT and conventionally tilled production systems across 48 crops in 63 countries. It reported that ZT is only profitable in rainfed systems and when it is combined with full residue retention and crop rotation. “However, in Bihar, marginal and resource-poor farmers cannot afford to leave the full residue in the field as they use the rice straw to feed their livestock,” says Keil.

CSISA Aids Female Farmers in India

Female farmers in India are not only responsible for managing the farm work and household chores, but have increasingly become a part of the sowing, weeding and harvesting of crops. The Cereal Systems for South Asia (CSISA) project is working with female farmers in Bihar to ensure that women are learning and developing new skills and getting information on improved farming technologies and practices.

In 2014, more than 100 female farmers in Muzaffarpur district planted their wheat using zero tillage technology. Watch the video above to learn more about the initiatives implemented by CSISA in India.

Enhancing the Capacities of Female Farmers

Climate Smart Villages- Karnal

Photo: P. Vishawanathan/CCAFS

By Katie Lutz/CIMMYT

NEW DEHLI, India (May 5, 2015)- In India, the belief is that wheat farming is mainly the domain of men.

But women do in fact play an important role in wheat production, according to a recent blog post by agricultural economist Surabhi Mittal and research associate Vinod Hariharan, both of CIMMYT. Entitled Enhancing the Capacity of Farm Women, their post featured on Agriculture Extension in South Asia.

“In India as per the agricultural census, one third of the agricultural cultivators, both farmers and laborers are women,” said Mittal and Hariharan. “Their participation in agriculture is rapidly increasing because of multiple factors but the prime reason is out-migration of male members of the family in search of alternative avenues for income, thus leaving the women of the household to be fully involved in agriculture.”

Mittal and Hariharan’s information is based on ongoing research under the Global Study on Gender Norms, Agency and Innovation in Agriculture and Natural Resource Management project funded by WHEAT and activities in India under a CIMMYT-CCAFS led project. The study discusses women’s roles in agriculture, the role of women in decision making at home and in the farms and why these roles are important for the advancement of agriculture.

Read the full blog post here to discover more about Mittal and Hariharan’s research.