Posts Tagged ‘IWYP’

Genes from the wild offer potential for faster photosynthesis, higher-yielding wheat

New IWYP brief highlights innovations for high-yielding wheat lines

Aegilops neglecta, a wild wheat relative. Photo: Rocio Quiroz / CIMMYT

Our partners at the International Wheat Yield Partnership are examining hundreds of wheat wild relatives, wheat-wild crosses and landraces in a search for gene variants associated with a high rate of photosynthesis – a trait related to higher crop yield. 

This news is highlighted in the first IWYP Science Brief — a series launched to share ongoing research and exciting outputs that aim to transform scientific innovations into new higher yielding wheat lines.

A research collaboration led by Erik Murchie at the University of Nottingham, UK has found a number of wheat wild relative species with photosynthetic rates up to a third greater than any of the modern wheat varieties.

 Twenty-one wheat lines with chromosomal segments associated with this trait have been evaluated in the field at the IWYP Hub in Obregon, Mexico. The four best segments are being introduced into IWYP lines to evaluate their effect in the elite spring wheat lines that are used in breeding programs around the world.

Read the full brief here, and check the IWYP website and twitter account — and our Facebook page – for new briefs as they are released.

New publication: Breeder friendly Phenotyping

In crop research fields, it is now a common sight to see drones or other high-tech sensing tools collecting high-resolution data on a wide range of traits – from simple measurement of canopy temperature to complex 3D reconstruction of photosynthetic canopies.

This technological approach to collecting precise plant trait information, known as phenotyping, is becoming ubiquitous on research fields, but according to experts at the International Maize and Wheat Improvement Center (CIMMYT) and other research institutions, breeders can profit much more from these tools, when used judiciously. 

Examples of different classes and applications of breeder friendly phenotyping. Image: M. Reynolds et al.

In a new article in the journal Plant Science, CIMMYT Wheat Physiologist Matthew Reynolds and colleagues explain the different ways that phenotyping can assist breeding — from simple to use, “handy” approaches for large scale screening, to detailed physiological characterization of key traits to identify new parental sources — and why this methodology is crucial for crop improvement. The authors make the case for breeders to invest in phenotyping, particularly in light of the imperative to breed crops for warmer and harsher climates.

Read the full article here.

This work was supported by the International Wheat Yield Partnership (IWYP); the Sustainable Modernization of Traditional Agriculture (MasAgro) Project by the Ministry of Agriculture and Rural Development (SADER) of the Government of Mexico; and the CGIAR Research Program on Wheat (WHEAT).

Bottlenecks between basic and applied plant science jeopardize life-saving crop improvements

International collaboration and a visionary approach by both researchers and funders are urgently needed to translate primary plant research results into real impact in the fields, argue crop improvement experts.

Visitors at the CIMMYT’s experimental station in Obregon, Mexico, where elite wheat lines are tested for new traits.

For a number of reasons – including limited interdisciplinary collaboration and a dearth of funding, revolutionary new plant research findings are not being used to improve crops.

 “Translational research” — efforts to convert basic research knowledge about plants into practical applications in crop improvement – represents a necessary link between the world of fundamental discovery and farmers’ fields.  This kind of research is often seen as more complicated and time consuming than basic research and less sexy than working at the “cutting edge” where research is typically divorced from agricultural realities in order to achieve faster and cleaner results; however, modern tools — such as genomics, marker-assisted breeding, high throughput phenotyping of crop traits using drones, and speed breeding techniques – are making it both faster and cost-effective.

In a new article in Crop Breeding, Genetics, and Genomics, wheat physiologist Matthew Reynolds of the International Maize and Wheat Improvement Center (CIMMYT) and co-authors make the case for increasing not only funding for translational research, but the underlying prerequisites: international and interdisciplinary collaboration towards focused objectives and a visionary approach by funding organizations. 

“It’s ironic,” said Reynolds. “Many breeding programs have invested in the exact technologies — such as phenomics, genomics and informatics — that can be powerful tools for translational research to make real improvements in yield and adaptation to climate, disease and pest stresses.  But funding to integrate these tools in front-line breeding is quite scarce, so they aren’t reaching their potential value for crop improvement.” 

Many research findings are tested for their implications for wheat improvement by the International Wheat Yield Partnership (IWYP) at the IWYP Hub — a centralized technical platform for evaluating innovations and building them into elite wheat varieties, co-managed by CIMMYT at its experimental station in Obregon, Mexico.

IWYP has its roots with the CGIAR Research Program on Wheat (WHEAT), which in 2010 formalized the need to boost both wheat yield potential as well as its adaptation to heat and drought stress. The network specializes in translational research, harnessing scientific findings from around the world to boost genetic gains in wheat, and capitalizing on the research and pre-breeding outputs of WHEAT and the testing networks of the International Wheat Improvement Network (IWIN). These efforts also led to the establishment of the Heat and Drought Wheat Improvement Consortium (HeDWIC).

Members of the International Wheat Yield Partnership which focuses on translational research to boost wheat yields.

“We’ve made extraordinary advances in understanding the genetic basis of important traits,“ said IWYP’s Richard Flavell, a co-author of the article.  “But if they aren’t translated into crop production, their societal value is lost.”

 The authors — all of whom have proven track records in both science and practical crop improvement — offer examples where exactly this combination of factors led to the impactful application of innovative research findings.

  • Improving the Vitamin A content of maize: A variety of maize with high Vitamin A content has the potential to reduce a deficiency that can cause blindness and a compromised immune system. This development happened as a result of many translational research efforts, including marker-assisted selection for a favorable allele, using DNA extracted from seed of numerous segregating breeding crosses prior to planting, and even findings from gerbil, piglet and chicken models  — as well as long-term, community-based, placebo-controlled trials with children — that helped establish that Vitamin A maize is bioavailable and bioefficacious.
  • Flood-tolerant rice: Weather variability due to climate change effects is predicted to include both droughts and floods. Developing rice varieties that can withstand submergence in water due to flooding is an important outcome of translational research which has resulted in important gains for rice agriculture.  In this case, the genetic trait for flood tolerance was recognized, but it took a long time to incorporate the trait into elite germplasm breeding programs. In fact, the development of flooding tolerant rice based on a specific SUB 1A allele took over 50 years at the International Rice Research Institute in the Philippines (1960–2010), together with expert molecular analyses by others. The translation program to achieve efficient incorporation into elite high yielding cultivars also required detailed research using molecular marker technologies that were not available at the time when trait introgression started.

Other successes include new approaches for improving the yield potential of spring wheat and the discovery of traits that increase the climate resilience of maize and sorghum. 

One way researchers apply academic research to field impact is through phenotyping. Involving the use of cutting edge technologies and tools to measure detailed and hard to recognize plant traits, this area of research has undergone a revolution in the past decade, thanks to more affordable digital measuring tools such as cameras and sensors and more powerful and accessible computing power and accessibility.

An Australian Pine on CIMMYT’s El Batan Experimental Station commemorates the 4th Symposium of the International Plant Phenotyping Network.

Scientists are now able to identify at a detailed scale plant traits that show how efficiently a plant is using the sun’s radiation for growth, how deep its roots are growing to collect water, and more — helping breeders select the best lines to cross and develop.

Phenotyping is key to understanding the physiological and genetic bases of plant growth and adaptation and has wide application in crop improvement programs.  Recording trait data through sophisticated non-invasive imaging, spectroscopy, image analysis, robotics, high-performance computing facilities and phenomics databases allows scientists to collect information about traits such as plant development, architecture, plant photosynthesis, growth or biomass productivity from hundreds to thousands of plants in a single day. This revolution was the subject of discussion at a 2016 gathering of more than 200 participants at the International Plant Phenotyping Symposium hosted by CIMMYT in Mexico and documented in a special issue of Plant Science.

There is currently an explosion in plant science. Scientists have uncovered the genetic basis of many traits, identified genetic markers to track them and developed ways to measure them in breeding programs. But most of these new findings and ideas have yet to be tested and used in breeding programs – wasting their potentially enormous societal value.

Establishing systems for generating and testing new hypotheses in agriculturally relevant systems must become a priority, Reynolds states in the article. However, for success, this will require interdisciplinary, and often international, collaboration to enable established breeding programs to retool.  Most importantly, scientists and funding organizations alike must factor in the long-term benefits as well as the risks of not taking timely action. Translating a research finding into an improved crop that can save lives takes time and commitment. With these two prerequisites, basic plant research can and should positively impact food security.

Authors would like to acknowledge the following funding organizations for their commitment to translational research.

The International Wheat Yield Partnership (IWYP) is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) in the UK; the U. S. Agency for International Development (USAID) in the USA; and the Syngenta Foundation for Sustainable Agriculture (SFSA) in Switzerland.

The Heat and Drought Wheat Improvement Consortium (HeDWIC) is supported by the Sustainable Modernization of Traditional Agriculture (MasAgro) Project by the Ministry of Agriculture and Rural Development (SADER) of the Government of Mexico; previous projects that underpinned HeDWIC were supported by Australia’s Grains Research and Development Corporation (GRDC).

The Queensland Government’s Department of Agriculture and Fisheries in collaboration with The Grains Research and Development Corporation (GRDC) have provided long-term investment for the public sector sorghum pre-breeding program in Australia, including research on the stay-green trait. More recently, this translational research has been led by the Queensland Alliance for Agriculture and Food Innovation (QAAFI) within The University of Queensland.

ASI validation work and ASI translation and extension components with support from the United Nations Development Programme (UNDP) and the Bill and Melinda Gates Foundation, respectively.

Financial support for the maize proVA work was partially provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The CGIAR Research Program MAIZE (CRP-MAIZE) also supported this research.

The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

Top scientists from CGIAR to present latest research at International Wheat Congress in Canada

More than 800 global experts will gather in Saskatoon to strategize on ways to meet projected nutritional needs of 60% more people by 2050.

SASKATOON, Canada (CIMMYT) — Amid global efforts to intensify the nutritional value and scale of wheat production, scientists from all major wheat growing regions in the world will gather from July 21 to 26, 2019 at the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province, Saskatchewan. The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT), is a founding member of the G20 Wheat Initiative, a co-host of the conference.

Wheat provides 20% of all human calories consumed worldwide. In the Global South, it is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 (C$2.60) a day.

In spite of its key role in combating hunger and malnutrition, the major staple grain faces threats from climate change, variable weather, disease, predators and many other challenges. Wheat’s vital contribution to the human diet and farmer livelihoods makes it central to conversations about the rural environment, agricultural biodiversity and global food security.

More than 800 delegates, including researchers from the CGIAR Research Program on Wheat, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Wheat Yield Partnership (IWYP), Cornell University’s Delivering Genetic Gain in Wheat project (DGGW), the University of Saskatchewan and many other organizations worldwide will discuss the latest research on wheat germplasm.

“We must solve a complex puzzle,” said Martin Kropff, CIMMYT’s director general. “Wheat must feed more people while growing sustainably on less land. Wheat demand is predicted to increase 60% in the next three decades, while climate change is putting an unprecedented strain on production.”

“The scientific community is tackling this challenge head-on, through global collaboration, germplasm exchange and innovative approaches. Researchers are looking at wheat’s temperature response mechanisms and using remote sensing, genomics, bio-informatics and other technologies to make wheat more tolerant to heat and drought,” Kropff said.

The congress is the first major gathering of the wheat community since the 2015 International Wheat Conference in Sydney, Australia.

CGIAR and CIMMYT scientists will share the latest findings on:

  • State-of-the-art approaches for measuring traits to speed breeding for heat and drought tolerance
  • Breeding durum (pasta) wheat for traits for use in bread products
  • New sources of diversity — including ancient wheat relatives — to create aphid-resistant wheat and other improved varieties
  • DNA fingerprinting to help national partners identify gaps in improved variety adoption

For more details on schedule and scientists’ presentations, click here.

Research shows that more than 60% of wheat varietal releases since 1994 were CGIAR-related.

Low- and middle-income countries are the primary focus and biggest beneficiaries of CGIAR wheat research, but high-income countries reap substantial rewards as well. In Canada, three-quarters of the wheat area is sown to CGIAR-related cultivars and in the United States almost 60% of the wheat area was sown to CGIAR-related varieties, according to the research.

  • WHEN: July 21-26, 2019
  • The opening ceremony and lectures will take place on Monday, July 22, 2019 from 08:50 to 10:50 a.m.
  • The Premier of Saskatchewan, Scott Moe, will give welcoming remarks at the opening ceremony. Other attending dignitaries include the Mayor of Saskatoon, Charlie Clark, and the President of the University of Saskatchewan, Peter Stoicheff.
  • Contacts: For further information, or to arrange interviews, please contact:
  • Marcia MacNeil: m.macneil@cgiar.org
  • Julie Mollins: j.mollins@cgiar.org

About CGIAR: CGIAR is a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

About the CGIAR Research Program on Wheat: Joining advanced science with field-level research and extension in lower- and middle-income countries, the Agri-Food Systems CGIAR Research Program on Wheat (WHEAT) works with public and private organizations worldwide to raise the productivity, production and affordable availability of wheat for 2.5 billion resource-poor producers and consumers who depend on the crop as a staple food. WHEAT is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding for WHEAT comes from CGIAR and national governments, foundations, development banks and other public and private agencies, in particular the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID). www.wheat.org

About CIMMYT: The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

IWYP annual report highlights new wheat lines, product development

The International Wheat Yield Partnership (IWYP), a partnership of public sector agencies and private industry focusing on innovations in wheat breeding for significant yield increases, recently released its 2017-2018 Annual Report.  Many new research discoveries have been recorded over the last year, from germplasm with traits to improve genetic yield potential to molecular genetic markers associated with a target trait and new methods and technology to improve screening of individual wheat lines.

Accomplishments include making wheat lines with higher biomass and grain yields available for release in national programs, validating the hypothesis that combining parents with high biomass and good harvest index can boost genetic gains.  IWYP researchers have also made publicly available new wheat lines with increased grain size and spike morphology, which several breeding companies in the UK, Europe and Brazil have requested. Yield trials have also led to the discovery of several physiological trait lines that outperform the best local and International Maize and Wheat Improvement Center (CIMMYT) check varieties in over 27 environments.

The Partnership, which includes 30 projects in more than 50 laboratories in 12 countries, is now in its third year. Outputs from its earliest projects are currently being validated and integrated in a prebreeding pipeline at the IWYP Hub at CIMMYT for development into pre-products. This ensures the best “toolbox” of new traits, genetics, and technology to reach its critical challenge of raising genetic wheat yield potential 50 percent by 2035.

Read the full report here.

Now available: 2016-17 Annual Report of the International Wheat Yield Partnership

Wheat breeding lines from the IWYP Hub at CIMMYT are out-yielding local checks in tests, validating the strategy of combining high biomass individuals with those that feature better grain filling attributes. The lines are being sent to public and private breeding programs worldwide. Read more about this and other exciting IWYP activities and outputs:

Annual Report

$20 million in grants for research to boost wheat yield potential

Wheat Remote Sensing-flip

Photo: Alfredo Saénz/CIMMYT

By Mike Listman/CIMMYT

COLLEGE STATION, Texas (October 30, 2015)- The International Wheat Yield Partnership (IWYP) will recommend around US $20 million in grants awards from its funders for a selection of 8 research projects by leading institutes to increase wheat’s photosynthetic and energy-use efficiency and harness the genetics behind key components of yield.

Resulting from a January 2015 call for competitive research proposals, the projects fit the IWYP goal of raising the genetic yield potential of wheat by up to 50% in the coming 20 years.

To read more about the projects, IWYP, and the Initiative’s funders, click here.