Posts Tagged ‘Turkey’

The end of an era: Alexey Morgunov retires after a 28-year career

This story written by Alison Doody was originally posted on the CIMMYT website.

At the end of 2019, the International Maize and Wheat Improvement Center (CIMMYT) will say goodbye to Alexey Morgunov, head of the International Winter Wheat Improvement Program (IWWIP) in Turkey.

A native of Russia, Morgunov joined CIMMYT as a spring wheat breeder in 1991 working with Sanjaya Rajaram, former Global Wheat Program director and World Food Prize laureate. Morgunov went on to work as a breeder of winter wheat in Turkey in 1994 and later to Kazakhstan, where he helped generate new wheat varieties and technologies for Central Asia and the Caucasus region.

Since 2006 he has led the International Winter Wheat Improvement Program (IWWIP), a highly-productive collaboration between Turkey, the International Center for Research in Dry Areas (ICARDA), and CIMMYT.

As part of that program, Morgunov contributed to the development of more than 70 widely grown wheat varieties in Central and West Asia and, in 2013, to a national wheat landrace inventory in Turkey. He has also helped develop and characterize synthetic wheats — created by crossing modern durum wheat with grassy relatives of the crop — and used them in breeding to broaden the diversity of winter wheat.

Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)
Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)

A professional journey across Central Asia

Morgunov said his childhood in rural Russia instilled in him the importance of agriculture and of education.

“My parents, who lived in rural Russia, went through hunger and were trying to make sure that their children worked somewhere close to food production so that we wouldn’t go hungry,” he explained. “They said: ‘OK, Alex, you go to an agricultural university and you will not be hungry.’ ”

After his university studies, Morgunov joined the Plant Breeding Institute at Cambridge as a visiting scientist in the late 1980s, where he crossed paths with CIMMYT scientists seeking to partner with the newly independent states of the former Soviet Union. After an interview in 1991, he was invited to join the CIMMYT team in Mexico as a wheat breeder.

He was later posted to Kazakhstan to build relationships in Central Asia, a period he cites as a standout. “In the late 90s CIMMYT started working with Central Asian countries experiencing severe food security issues,” he said. “They didn’t really have any technologies or varieties for grain production, so we started a program in 95/96 which later developed into a CGIAR program.”

“We had great impact in those countries at the time, introducing zero tillage in Kazakhstan, new seed varieties in Tajikistan after the civil war, and high-yielding rust-resistant varieties to Uzbekistan.”

Reflecting on his time at CIMMYT, it was the friends and connections he made that stood out the most for Morgunov.

“The thing I most enjoyed was communicating with colleagues,” Morgunov said. “You start working in Kazakhstan and other places and building up cooperation and technical relationships and, over time, these relationships become friendships that we enjoy for as long as we live. I think this is very satisfactory for us as human beings.”

Last month, Morgunov received a fellowship from the Crop Science Society of America. The award is the highest recognition granted by the association.

Active retirement

One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)
One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)

Despite his plans to retire, Morgunov still plans to continue working — but on his own terms. “My wife is from Kazakhstan so we will be moving there and I plan to continue working in a different capacity and different schedule,” he explains. “Some Russian universities are writing to me to participate in projects and also universities from Kazakhstan. I have a couple of PhD students in Kazakhstan so I’d like to move more into the educational side of things, working with younger people.”

He was also given an Adjunct Faculty position by Washington State University early this year and will volunteer for them.

Morgunov has also recommended that CIMMYT creates an “emeritus” status for long-serving colleagues retiring from the organization, so they can continue to support the organization.

It won’t be all work though. Morgunov is a devoted tennis player and plans to improve his backhand. A keen sailor, he also hopes to spend more time on the waves and visiting new countries.

CGIAR to strengthen collaboration with Turkish Ministry of Agriculture

Delegates from CIMMYT, ICARDA, the Turkish Ministry of Agriculture and Forestry and others discussing collaboration for crop research.
Photo: General Directorate of Agricultural Research (GDAR) of Ministry of Agriculture and Forestry of Turkish Republic

Wheat research leaders from the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agriculture in the Dry Areas (ICARDA) recently traveled to Turkey to discuss continued collaboration among Turkey’s Ministry of Agriculture and Forestry and the two institutions.

Hans Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat and Michael Baum, program director for Biodiversity and Crop Improvement at ICARDA, met with Deputy Minister Mustafa Aksu and General Director for Agricultural Research of the Turkish Ministry of Agriculture and Forestry (GDAR) Ozkan Kayacan to evaluate the current and potential areas for collaboration, both in Turkey and the region.

Turkey and CIMMYT have a long history of joint research dating back nearly 50 years  Joint research includes the International Winter Wheat Improvement Program (IWWIP), a joint Soil Borne Pathogens Program based in Turkey, among other programs such as the Delivering Genetic Gain in Wheat (DGGW) program.

“Our relationship with Turkey has been longstanding and very fruitful,” said Hans Braun. “We are pleased to continue and grow this partnership between CGIAR Centers and Turkey towards a bigger CGIAR-wide crop improvement initiative.”

IWWIP, a joint program of Turkey’s Ministry of Agriculture and Forestry and CIMMYT since the mid-1980s with ICARDA joining in 1991, develops winter wheat germplasm for Central and West Asia and facilitates a winter wheat germplasm exchange for the global breeding community.  The program works jointly with research institutes of the Ministry of Agriculture and Forestry to distribute germplasm globally through observation nurseries around the world.  At least 42 varieties from IWWIP have been released in Afghanistan, Armenia, Azerbaijan, Georgia, Iran, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan, Turkey, Turkmenistan and Uzbekistan.

The CIMMYT-Turkey Soil Borne Pathogens Program, a world-class center for research on soil borne pathogens, benefits from ongoing support by the Turkish Ministry of Agriculture and Forestry to fight against diseases affecting cereal crops, which occupy 65 percent of Turkey’s farmland.

During the one-day meeting, the group, which included representatives from the Turkish Ministry’s Field Crops Department, IWWIP, the Sakarya Research Institute and others, reviewed current progress of the ongoing joint programs and developed work plans for next steps to improve the strong cooperation. New areas of collaboration with potential support by the Turkish government include joint research with CIMMYT’s maize program and opportunities for capacity building support in wheat improvement.

Meeting attendees included Turkish Ministry of Agriculture and Forestry Deputy General Directors Ilhan Aydin and Ihsan Arslan, Head of Field Crops Department Ayfer Sahin, IWWIP Coordinator Fatih Ozdemir, Sakarya Research Institute Director Yavuz Agi, and Specialist Merve Altan, CIMMYT Global Wheat Program Director Hans Braun; CIMMYT Country Representative for Turkey Abdelfattah A.S. Dababat, CIMMYT Consultant Seher Turkyilmaz Sinclair, ICARDA Program Director Michael Baum, and Turkey Country Representative for ICARDA Mesut Keser.

Discovering the value of “lost” wheat landraces

Efforts to preserve wheat biodiversity help crops, farmers and consumers

For more than 8000 years in an area that now includes Turkey and Afghanistan hundreds of local varieties — or landraces— evolved to be uniquely adapted to their environment and ideally suited for local production and consumption.  Over the years, for economic reasons, many farmers have adopted higher-yielding modern varieties, with only small subsistence farmers in remote areas still growing ancient landraces.  In Turkey, for example, a 2009 study showed the share of local landraces was under 1 percent of the total wheat production area.

Finding, identifying and conserving these local varieties not only safeguards the great biodiversity of wheat in the world, but also helps state of the art efforts to develop resistance to pests and disease, tolerance to environmental stresses and more nutritious wheat.

A selection of ancient wheat landraces found in Turkey. Photo: FAO

In a 5-year project supported by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund, wheat researchers from the International Maize and Wheat Improvement Center (CIMMYT), such as winter wheat breeder and head of the Turkey-based International Winter Wheat Improvement Program Alex Morgunov, combed the countryside of Turkey for ancient wheat varieties.  Between 2009 and 2014 they identified around 162 local landraces in Turkey alone. 

Now a new project, Wheat Landraces, supported by the UN Food and Agriculture Organization (FAO) International Treaty on Plant Genetic Resources for Food and Agriculture,  has expanded to more countries in this region, where wheat plays an important role in food security and landraces continue to be cultivated.  Researchers from CIMMYT and Turkey’s Bahri Dagdas International Agricultural Research Institute are selecting the most promising wheat landraces collected from farmers in those remote regions and using them to develop new, more resilient wheat germplasm for breeding and research.

To complete the cycle, they plan to distribute the seeds of these improved landraces to farming communities in the target provinces and offer training on sustainably cultivating their unique landraces to maintain biodiversity in their fields.  

“These landraces are very important to small farmers in remote mountainous regions,” said Morgunov.  “And they are rich source of genetic traits to fight future threats to wheat production.”

“We are honored to help farmers keep these varieties alive in their fields.”

Transporting harvested local wheat landraces in Turkey. Photo: Alex Morgunov, CIMMYT

Diversity is beneficial for not only wheat health, but human health as well. A conference this fall in Istanbul will bring wheat researchers and the health community together to share progress and discuss strategies for improving the health benefits of wheat using diverse genetic resources.


The Wheat Landraces project is led by CIMMYT and supported by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund.  

Madhav Bhatta identifies new unique genes for the use of synthetics in wheat breeding

This profile of PhD student and visiting CIMMYT-Turkey researcher Madhav Bhatta, by Emma Orchardson was originally posted on InSide CIMMYT.

Madhav Bhatta at a IWWIP testing site in Turkey.

“Agriculture has always been my passion. Since my childhood, I’ve been intrigued by the fact that agriculture can provide food for billions of people, and without it, we cannot survive.”   

Wheat is one of the world’s most widely grown cereal crops. Global production between 2017 and 2018 exceeded 700 million tons and fed more than one third of the world’s population. Based on the current rate of population increase, cereal production will need to increase by at least 50 percent by 2030.

However, biotic and abiotic stresses such as crop diseases and drought continue to place significant constraints on agricultural production and productivity. Global wheat yield losses due to diseases such as wheat rust have been estimated at up to $5 billion per year since the 1990s, and rising temperatures are thought to reduce wheat production in developing countries by up to 30 percent.

“The importance of biotic and abiotic stress resistance of wheat to ensuring food security in future climate change scenarios is not disputed,” says Madhav Bhatta. “The potential of wide-scale use of genetic resources from synthetic wheat to accelerate and focus breeding outcomes is well known.”

In his recently completed a PhD project, Bhatta focused on the identification of genes and genomic regions controlling resistance to biotic and abiotic stresses in synthetic hexaploid wheat, that is, wheat created from crossing modern wheat with its ancient grass relatives. His research used rich genetic resources from synthetic wheat to identify superior primary synthetics possessing resistance to multiple stresses. It also aimed to identify the respective genes and molecular markers that can be used for market-assisted transfer of the genes into high-yielding modern wheat germplasm.

“My study sought to evaluate the variation within this novel synthetic germplasm for improved grain yield, quality and mineral content, reduced toxic heavy metal accumulation, and identify the genes contributing to better yield, end-use and nutritional quality.”

“Working in a collaborative environment with other scientists and farmers was the most enjoyable aspect of my research.”

Working under the joint supervision of Stephen Baenziger, University of Nebraska-Lincoln, and Alexey Morgounov, CIMMYT, Bhatta spent two consecutive summers conducting field research at various research sites across Turkey. The research was conducted within the framework of the International Winter Wheat Improvement Program (Turkey-CIMMYT-ICARDA). Over the course of six months, he evaluated 126 unique synthetic wheat lines developed from two introgression programs, which he selected for their genetic diversity.

“The most fascinating thing was that we were able to identify several lines that were not only resistant to multiple stresses, but also gave greater yield and quality,” says Bhatta. “These findings have a direct implication for cereal breeding programs.”

Bhatta and his collaborators recommended 17 synthetic lines that were resistant to more than five stresses, including rusts, and had a large number of favorable alleles for their use in breeding programs. They also recommended 29 common bunt resistant lines, seven high yielding drought tolerant lines, and 13 lines with a high concentration of beneficial minerals such as iron and zinc and low cadmium concentration.

“We identified that the D-genome genetic diversity of synthetics was more than 88 percent higher than in a sample of elite bread wheat cultivars,’ Bhatta explains. “The results of this study will provide valuable information for wheat genetic improvement through the inclusion of this novel genetic variation for cultivar development.”

Madhav Bhatta completed his PhD in Plant Breeding and Genetics at the University of Nebraska-Lincoln, where he was a Monsanto Beachell-Borlaug International Scholar. He is now based at the University of Wisconsin-Madison, USA, where he recently began a postdoctoral research position in the Cereal Breeding and Genetics program. He is currently working on optimizing genomic selection models for cereal breeding programs and he looks forward to future collaborations with both public and private institutions.

The seeds of the superior synthetics are now available from CIMMYT-Turkey. For more information, contact Alexey Morgounov (a.morgounov@cgiar.org).

Read more about the results of Bhatta’s investigation in the recently published articles listed below:

  1. Bhatta M., P.S. Baenizger, B. Waters, R. Poudel, V. Belamkar, J. Poland, and A. Morgounov. 2018. Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 19 (10), 3237.
  2. Bhatta M., A. Morgounov, V. Belamkar, A. Yorgancilar, and P.S. Baenziger. 2018. Genome-Wide Association Study Reveals Favorable Alleles Associated with Common Bunt Resistance in Synthetic Hexaploid Wheat. Euphytica 214 (11). 200.
  3. Bhatta M, A. Morgounov, V. Belamkar, and P. S. Baenziger. 2018. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 19 (10), 591.
  4. Bhatta M, A. Morgounov, V. Belamkar, J. Poland, and P. S. Baenziger. 2018. Unlocking the Novel Genetic Diversity and Population Structure of Synthetic Hexaploid Wheat. BMC Genomics, 19:591. https://doi.org/10.1186/s12864-018-4969-2.
  5. Morgunov A., A. Abugalieva, A. Akan, B. Akın, P.S. Baenziger, M. Bhatta et al. 2018. High-yielding Winter Synthetic Hexaploid Wheats Resistant to Multiple Diseases and Pests. Plant genetic resources, 16(3): 273-278.

Inspiring millennials to focus on food security: The power of mentorship

by Mike Listman, November 13, 2018

As part of their education, students worldwide learn about the formidable challenges their generation faces, including food shortages, climate change, and degrading soil health. Mentors and educators can either overwhelm them with reality or motivate them by real stories and showing them that they have a role to play. Every year the World Food Prize lives out the latter by introducing high school students to global food issues at the annual Borlaug Dialogue, giving them an opportunity to interact with “change agents” who address food security issues. The World Food Prize offers some students an opportunity to intern at an international research center through the Borlaug-Ruan International Internship program.
Tessa Mahmoudi

Tessa Mahmoudi, plant microbiologist and 2012 World Food Prize Borlaug-Ruan summer intern, credits the mentorship of CIMMYT researchers in Turkey with changing her outlook on the potential of science to improve food security and health. (Photo: University of Minnesota).

Plant Microbiologist Tessa Mahmoudi, a 2012 World Food Prize’s Borlaug-Ruan summer intern, says her experience working with CIMMYT researchers in Turkey when she was 16 years old profoundly changed her career and her life.

“For a summer I was welcomed to Turkey not as a child, but as a scientist,” says Mahmoudi, who grew up on a farm in southeast Minnesota, USA. “My hosts, Dr. Abdelfattah A. Dababat and Dr. Gül Erginbas-Orakci, who study soil-borne pathogens and the impact those organisms have on food supplies, showed me their challenges and, most importantly, their dedication.”

Mahmoudi explains she still finds the statistics regarding the global food insecurity to be daunting but saw CIMMYT researchers making real progress. “This helped me realize that I had a role to play and an opportunity to make positive impact.”

Among other things, Mahmoudi learned what it meant to be a plant pathologist and the value of that work. “I began to ask scientific questions that mattered,” she says. “And I went back home motivated to study — not just to get good grades, but to solve real problems.”

She says her outlook on the world dramatically broadened. “I realized we all live in unique realities, sheltered by climatic conditions that strongly influence our world views.”

According to Mahmoudi, her internship at CIMMYT empowered her to get out of her comfort zone and get involved in food security issues. She joined the “hunger fighters” at the University of Minnesota while pursuing a bachelor’s in Plant Science. “I was the president of the Project Food Security Club which focuses on bring awareness of global hunger issues and encouraging involvement in solutions.” She also did research on stem rust under Matthew Rouse, winner of the World Food Prize 2018  Norman Borlaug Award for Field Research and Application.

Pursuing a master’s in plant pathology at Texas A&M University under the supervision of Betsy Pierson, she studied the effects of plant-microbe interactions on drought tolerance and, specifically, how plant-microbe symbiosis influences root architecture and wheat’s ability to recover after suffering water stress.

Mahmoudi incorporates interactive learning activities in her class (see her website, https://reachingroots.org/). Her vision is to increase access to plant science education and encourage innovation in agriculture.Currently, Mahmoudi is involved in international development and teaching. As a horticulture lecturer at Blinn College in Texas, she engages students in the innovative use of plants to improve food security and global health.

“As a teacher and mentor, I am committed to helping students broaden their exposure to real problems because I know how much that influenced me,” Mahmoudi says. “Our world has many challenges, but great teams and projects are making progress, such as the work by CIMMYT teams around the world. We all have a role to play and an idea that we can make a reality to improve global health.”

As an example, Mahmoudi is working with the non-profit Clean Challenge on a project to improve the waste system in Haiti. The initiative links with local teams in Haiti to develop a holistic system for handling trash, including composting organic waste to empower small holder farmers to improve their soil health and food security.

“Without my mentors, I would not have had the opportunity to be involved in these high impact initiatives. Wherever you are in your career make sure you are being mentored and also mentoring. I highly encourage students to find mentors and get involved in today’s greatest challenge, increasing food security.”

In addition to thanking the CIMMYT scientists who inspired her, Mahmoudi is deeply grateful for those who made her summer internship possible. “This would include the World Food Prize Foundation and especially Lisa Fleming, Ambassador Kenneth M. Quinn, the Ruan Family,” she says. “Your commitment to this high-impact, experiential learning opportunity has had lasting impact on my life.”