Posts Tagged ‘USAID’

Harnessing the potential of state-of-the-art genomic technologies for accelerating the rate of genetic gain in wheat

This blog by Philomin Juliana was originally published on the Borlaug Global Rust Initiative website.

Genomic breeding technologies offer exciting opportunities for wheat improvement amidst escalating challenges like changing climates, unpredictable temperatures, reduced precipitation and biotic stresses. Recognizing the need for accelerating the rate of genetic gain in wheat, the Delivering Genetic Gain in Wheat and the USAID Feed the Future projects have contributed extensively to the phenotyping and genotyping of an impressive number of 74,403 CIMMYT wheat breeding lines, generating more than a million phenotyping datapoints and 3 billion marker datapoints. These big datasets have been leveraged for evaluating state-of-the-art genomic technologies like genomic selection, genome-wide association mapping, and genomic fingerprinting that have empowered the CIMMYT wheat breeding program to efficiently deliver high-yielding, climate resilient and disease resistant varieties.

Genomic selection, a genomics-based selection strategy where genomic-estimated breeding values obtained from genome-wide molecular markers are used for the selection of individuals has gained burgeoning interest in recent years and is advocated as an approach that can dramatically accelerate genetic gains and change the role of phenotyping in breeding. Since it can be beneficial for CIMMYT and other wheat breeding programs, particularly in developing countries that are constrained in their ability to evaluate a large number of breeding lines due to limited resources, we have done a comprehensive evaluation of genomic selection for 35 key traits in wheat evaluated by CIMMYT and national partners.

Our results have provided strong evidence that genomic selection will be a very powerful tool for end-use quality related traits like alveograph, mixing time, grain protein, flour yield, flour sedimentation, loaf volume etc. and some diseases, that were well predicted using historic training populations. Hence, genomic estimated breeding values for these traits have been routinely integrated into selection decisions and selections have been scaled up to un-phenotyped early-generations using predicted values. This has led to a paradigm shift in integrating genomic breeding tools into CIMMYT’s wheat breeding pipeline and has resulted in better selection efficiency and high phenotyping cost-savings to the program.

We have also explored several genomic selection implementation scenarios for grain yield and determined the prospects of using genomic selection for minimizing the number of lines, years and sites tested by borrowing information from relatives, correlated years and sites. For this, we leveraged a large dataset of 61,064 grain yield observations from 1,974 yield trials evaluated by CIMMYT and national partners at 100 locations in 34 countries including Afghanistan, Algeria, Angola, Argentina, Bangladesh, Canada, Chile, China, Egypt, Ethiopia, Greece, India, Iran, Iraq, Libya, Mexico, Morocco, Myanmar, Nepal, Nigeria, Pakistan, Paraguay, Portugal, South Africa, Spain, Sudan, Taiwan, Tanzania, Tunisia, Turkey, Ukraine, Venezuela, Zambia and Zimbabwe. We also applied a quantitative genetics framework to explore the relationships between grain yield predictabilities and estimated heritabilities, variance components, phenotypic and genetic correlations for grain yield evaluated in different environments, all of which provided substantial insights into the challenges of predicting grain yield and the prospects for designing future genomic selection schemes.

We also performed a large genome-wide association study that led to a significant breakthrough in understanding the genetic-architecture of key traits like phenology, plant height, lodging, resistance to rusts and other foliar diseases, grain color, kernel weight, dough strength, bread-making quality, protein content and grain yield in wheat. We have identified hundreds of significant marker-trait associations and delineated 142 unique linkage-based QTLs, among which 55.6% were novel. One of the extremely intriguing and novel co-locations identified in our study was the association of the 2NS translocation from Aegilops ventricosa with grain yield in 10 different environments, stem rust seedling resistance to many races, stripe rust in Mexico, wheat blast, and lodging, demonstrating its remarkable value for wheat breeding. We also anchored about 542 significant trait-associated markers and 118 previously reported genes in proximity to the significant markers onto a powerful reference phenotype-genotype map aligned to the refence genome of bread wheat, which is a valuable resource providing new opportunities for accelerating genomics-assisted wheat breeding through a targeted selection of desired regions.

We have fingerprinted 44,624 wheat lines for 195 traits-associated markers, generating over 7.6 million data-points, which is a phenomenal resource to the global wheat community for enhancing productivity and stress-resilience in wheat. The fingerprinted panel comprises several key varieties cultivated worldwide, parents from CIMMYT’s crossing blocks 2009-2018 and is a quantum leap in understanding the genetic basis of traits in superior varieties. For example, a benchmark high-yielding CIMMYT-derived Mexican variety, BORLAUG100 F2014 was found to be rich in grain yield favorable alleles and a key stem rust QTL against the Ug99 lineage was traced back to old Kenyan (Kenya Fahari, Kenya Swara) and Ethiopian (FH6-1-7) varieties.

Furthermore, we also examined the marker allele frequency dynamics for key traits over 15 years to characterize the role of selection at CIMMYT in shaping patterns of allelic variation over time. While there was a spectacular increase in favorable allele frequencies for many traits over years due to selection, the results also emphasized the need for a continued effort to introduce novel sources of favorable alleles and the importance of integrating genomic tools in achieving accelerated enrichment of favorable alleles. Overall, our research has facilitated extending the frontiers of genomics-assisted breeding in wheat and will be very beneficial for future diagnostic marker development, gene discovery, marker-assisted selection and genomic selection in wheat.

Philomin Juliana’s 5 May 2020 seminar is here.

Ethiopian wheat farmers adopt quality seed and a vision for a more profitable future

This story by Mike Listman was originally published on the CIMMYT website.

High-yielding, disease-resistant wheat varieties used by Ethiopian wheat farmers between 2015 and 2018 gave them at least 20% more grain than conventional varieties, profits of nearly $1,000 per hectare when they grew and sold seed, and generally improved food security in participating rural households.

These are the result of a project to rapidly multiply and disperse high-quality seed of new improved varieties, and the work of leading Ethiopian and international research organizations. The outcomes of this project have benefitted nearly 1.6 million people, according to a comprehensive new publication.

“Grown chiefly by smallholders in Ethiopia, wheat supports the livelihoods of 5 million farmers and their families, both as a household food crop and a source of income,” said Bekele Abeyo, wheat scientist of the International Maize and Wheat Improvement Center (CIMMYT), leader of the project, and chief author of the new report. “Improving wheat productivity and production can generate significant income for farmers, as well as helping to reduce poverty and improve the country’s food and nutrition security.”

Wheat production in Ethiopia is continually threatened by virulent and rapidly evolving fungal pathogens that cause “wheat rusts,” age-old and devastating diseases of the crop. Periodic, unpredictable outbreaks of stem and stripe rust have overcome the resistance of popular wheat varieties in recent years, rendering the varieties obsolete and in urgent need of replacement, according to Abeyo.

“The eastern African highlands are a hot spot for rusts’ spread and evolution,” Abeyo explained. “A country-wide stripe rust epidemic in 2010 completely ruined some susceptible wheat crops in Oromia and Amhara regions, leaving small-scale, resource-poor farmers without food or income.”

The Wheat Seed Scaling project identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of their seed, and used field demonstrations and strategic marketing to reach thousands of farmers in 54 districts of Ethiopia’s major wheat growing regions, according to Abeyo. The United States Agency for International Development (USAID) funded the project and the Ethiopian Institute of Agricultural Research (EIAR) was a key partner.

Using parental seed produced by 8 research centers, a total of 27 private farms, farmer cooperative unions, model farmers and farmer seed producer associations — including several women farmer associations — grew 1,728 tons of seed of the new varieties for sale or distribution to farmers. As part of the work, 10 national research centers took part in fast-track variety testing, seed multiplication, demonstrations and training. The USDA Cereal Disease Lab at the University of Minnesota conducted seedling tests, molecular studies and rust race analyses.

A critical innovation has been to link farmer seed producers directly to state and federal researchers who supply the parental seed — known as “early-generation seed”— according to Ayele Badebo, a CIMMYT wheat pathologist and co-author of the new publication. “The project has also involved laboratories that monitor seed production and that test harvested seed, certifying it for marketing,” Badebo said, citing those accomplishments as lasting legacies of the project.

Abeyo said the project built on prior USAID-funded efforts, as well as the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) initiatives, led by Cornell University and supported by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID).

Protecting crops of wheat, a vital food in eastern Africa, requires the collaboration of farmers, governments and researchers, according to Mandefro Nigussie, Director General of EIAR.

“More than 131,000 rural households directly benefited from this work,” he said. “The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of a genetically diverse mix of varieties, and link farmers to better and profitable markets.”

RELATED RESEARCH PUBLICATIONS:

Achievements in fast-track variety testing, seed multiplication and scaling of rust resistant varieties: Lessons from the wheat seed scaling project, Ethiopia.

Reigning in the blast epidemic

Dr. J.M.C. Fernandes from Brazil explaining the working of spore trap to trainees

To build resilience against the threat of wheat blast, training sessions were held in Bangladesh to increase the reach of research findings and possible solutions as well as to educate the stakeholders involved. Since 2017, hands-on training on disease screening and surveillance of wheat blast have been organized every year in Bangladesh, with participation of national and international scientists. The third of its kind was jointly organized by the International Maize and Wheat Improvement Center (CIMMYT), Wheat and Maize Research Institute (BWMRI), and the Department of Agricultural Extension (DAE) Bangladesh during 19-28 February, 2019 at Regional Agricultural Research Station, Jashore with financial support from the Australian Centre for International Agricultural Research (ACIAR), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), the Krishi Gobeshona Foundation (KGF) and the U.S. Agency for International Development (USAID). The objective of the training was to learn the basic techniques of pathogen identification and its culturing, field inoculation and disease scoring and share experiences regarding combating the disease and its progress among the participants from home and abroad. Thirty five wheat scientists from China, India and Nepal as well as from BWMRI, DAE and CIMMYT in Bangladesh participated in the training.

The training was inaugurated by Kamala Ranjan Das, Additional Secretary (Research), Ministry of Agriculture, Bangladesh. The Director General of BWMRI, Dr. Naresh C. D. Barma was the Chair and Dr. T. P. Tiwari, Country Representative, CIMMYT Bangladesh and Additional Director of Jashore region of DAE were the special guests in the inaugural session. In addition to Bangladeshi experts, Dr. José Maurício C. Fernandes from Brazil, Dr. Pawan K. Singh from CIMMYT, Mexico and Dr. Timothy J. Krupnik from CIMMYT, Bangladesh presented the updates on the techniques for mitigating the disease. Dr. M. Akhteruzzaman, Deputy Director of DAE, Meherpur, who has been working very closely with wheat blast research and extension, spoke on the history and present status of wheat blast in Bangladesh. It was a unique opportunity for the trainees to listen from grass root level experience based on the real situation in the farmers’ fields.

Group photo of trainees at the precision phenotypic platform (PPP) for wheat blast at Regional Agricultural Research Station, Jashore, Bangladesh.

Wheat is especially susceptible to blast infection during warm and humid weather conditions. While the fungus infects all above ground parts of the crop, infection in spikes is most critical and responsible for yield loss. Hence, to determine whether blast is endemic to the specific region and also to assess the epidemic potential in unaffected regions, Dr. Fernandes developed a wheat blast forecasting model with support from CIMMYT Bangladesh. To collect data on the presence of wheat blast spores in the air, CIMMYT, in collaboration with BWMRI, installed four spore traps in four different wheat fields in Meherpur, Faridpur, Rajshahi and Dinajpur districts of Bangladesh. The results from these spore traps and weather parameters will help validate the wheat blast forecasting model. After final validation, the recommendation message will be sent to farmers and DAE personnel through mobile app. This will help farmers decide the perfect time for spraying fungicide to control blast effectively.

During the training participants received the hands-on experience of activities in the precision phenotypic platform (PPP) for wheat blast, where 4500 germplasm from different countries of the world and CIMMYT Mexico are being tested under artificial inoculated conditions. To keep the environment sufficiently humid, the trial is kept under mist irrigation to facilitate proper disease development. Trainees learned identification of leaf and spike symptoms of wheat blast, identification and isolation of conidia under microscope, inoculum preparation, tagging selected plants in the fields for inoculation, field inoculation of germplasms being tested at the PPP and more.

According to the United States Department of Agriculture (USDA), wheat consumption in Bangladesh is 7.7 million tons as of 2018 while only 1.25 million tons are supplied domestically. Since the majority of wheat is imported, it will adversely affect the economy if the comparatively smaller amount the country produces decreases due to blast. So the impact of wheat blast is not limited to food production but affects the economy as a whole, and steps to help mitigate the disease are crucial in ensuring healthy growth of wheat yield.

Wheat blast, caused by Magnaporthe oryzae pathotype Triticum (MoT), was first discovered in Brazil in 1985 and then surprisingly appeared in the wheat fields of Bangladesh in 2016, causing 25-30% yield loss in 15,000 ha. As an immediate response to this crisis, CIMMYT and the government of Bangladesh have worked together to mitigate the disease, most notably by distributing factsheets to farmers, conducting routine follow-ups followed by the development and rapid release of blast resistant wheat variety BARI Gom 33 and tolerant varieties (BARI Gom 30 and 32) and strengthening research on blast.


The saving grace of a hefty investment

By Md. Ashraful Alam, Sultana Jahan and M. Shahidul Haque Khan

Bangladesh farmer Raju Sarder rests his sickle and sits happily on a recently acquired reaper. Photo: iDE/Md. Ikram Hossain

A man in his early 20s walked the winding roads of Sajiara village, Dumuria upazila, Khulna District in Bangladesh. His head hanging low, he noticed darkness slowly descending and then looked up to see an old farmer wrapping up his own daily activities. With traditional tools in hand, the farmer looked exhausted. The young man, Raju Sarder, considered that there had to be a better way to farm while alleviating his drudgery and that of others in the community.

Determined to act, Raju set out to meet Department of Agricultural Extension (DAE) officials the very next day. They informed him about the Mechanization and Irrigation project of the Cereal Systems Initiative for South Asia (CSISA MI). They also introduced him to the project’s most popular technologies, namely the power tiller operated seeder, reaper and axial flow pumps, all of which reduce labor costs and increase farming efficiency.

Raju found the reaper to be the most interesting and relevant for his work, and contacted CSISA SI to acquire one.

The first challenge he encountered was the cost — $1,970 — which as a small-scale farmer he could not afford. CSISA MI field staff assured him that his ambitions were not nipped in the bud and guided him in obtaining a government subsidy and a loan of $1,070 from TMSS, one of CSISA MI’s micro financing partners. Following operator and maintenance training from CSISA MI, Raju began providing reaping services to local smallholder rice and wheat farmers.

He noticed immediately that he did not have to exert himself as much as before but actually gained time for leisure and his production costs dwindled. Most remarkably, for reaping 24 hectares Raju generated a profit of $1,806; a staggering 15 times greater than what he could obtain using traditional, manual methods and enough to pay back his loan in the first season.

“There was a time when I was unsure whether I would be able to afford my next meal,” said Raju, “but it’s all different now because profits are pouring in thanks to the reaper.”

As a result of the project and farmers’ interest, field labor in Raju’s community is also being transformed. Gone are the days when farmers toiled from dawn to dusk bending and squatting to cut the rice and wheat with rustic sickles. Laborious traditional methods are being replaced by modern and effective mechanization.

Through projects such as CSISA MI, CIMMYT is helping farmers like Raju to become young entrepreneurs with a bright future. Once poor laborers disaffected and treated badly in their own society, these youths now walk with dignity and pride as significant contributors to local economic development.

CSISA MI is a partnership involving the International Maize and Wheat Improvement Center (CIMMYT) and iDE, a non-governmental organization that fosters farmers’ entrepreneurial development, with funding from the USAID mission in Bangladesh under the Feed the Future Initiative.

Pakistan wheat seed makeover: More productive, resilient varieties for thousands of farmers

Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

Nearly 3,000 smallholder wheat farmers throughout Pakistan will begin to sow seed of newer, high-yielding, disease-resistant wheat varieties and spread the seed among their peers in 2019, through a dynamic initiative that is revitalizing the contribution of science-based innovation for national agriculture.

Some 73 tons of seed of 15 improved wheat varieties recently went out to farmers in the provinces of Baluchistan, Gilgit Baltistan, Khyber Pakhtunkhwa, Punjab and Sindh, as part of the Agricultural Innovation Program (AIP), an initiative led by the International Maize and Wheat Improvement Center (CIMMYT) with funding from the US Agency for International Development (USAID).

“Our main goal is to help farmers replace outdated, disease-susceptible wheat varieties,” said Muhammad Imtiaz, CIMMYT scientist and country representative for Pakistan who leads the AIP. “Studies have shown that some Pakistan farmers grow the same variety for as long as 10 years, meaning they lose out on the superior qualities of newer varieties and their crops may fall victim to virulent, rapidly evolving wheat diseases.”

With support from CIMMYT and partners, participating farmers will not only enjoy as much as 20 percent higher harvests, but have agreed to produce and share surplus seed with neighbors, thus multiplying the new varieties’ reach and benefits, according to Imtiaz.

He said the new seed is part of AIP’s holistic focus on better cropping systems, including training farmers in improved management practices for wheat.

Wheat is Pakistan’s number-one food crop. Farmers there produce over 25 million tons of wheat each year — nearly as much as the entire annual wheat output of Africa or South America.

Annual per capita wheat consumption in Pakistan averages over 120 kilograms, among the highest in the world and providing over 60 percent of Pakistanis’ daily caloric intake.

The seed distributed includes varieties that offer enhanced levels of grain zinc content. The varieties were developed by CIMMYT in partnership with HarvestPlus, a CGIAR research program to study and deliver biofortified foods.

According to a 2011 nutrition survey, 39 percent of children in Pakistan and 48 percent of pregnant women suffer from zinc deficiency, leading to child stunting rates of more than 40 percent and high infant mortality.

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

“I am very excited to be part of Zincol-16 seed distribution, because its rich ingredients of nutrition will have a good impact on the health of my family,” said Munsif Ullah, a farmer from Swabi District, Khyber Pakhtunkhwa province.

Other seed distributed includes that of the Pakistan-13 variety for rainfed areas of Punjab, Shahkar-13 for the mountainous Gilgit-Baltistan, Ehsan-16 for rainfed areas in general, and the Umeed-14 and Zardana varieties for Baluchistan.

All varieties feature improved resistance to wheat rust diseases caused by fungi whose strains are mutating and spreading quickly in South Asia.

CIMMYT and partners are training farmers in quality seed production and setting up demonstration plots in farmers’ fields to create awareness about new varieties and production technologies, as well as collecting data to monitor the varieties’ performance.

They are also promoting resource-conserving practices such as balanced applications of fertilizer based on infrared sensor readings, ridge planting, and zero tillage. These innovations can save water, fertilizer, and land preparation costs, not to mention increasing yields.

“CIMMYT’s main focus in Pakistan is work with national wheat researchers to develop and spread better wheat production systems,” Imtiaz explained. “This includes improved farming practices and wheat lines that offer higher yields, disease resistance, and resilience under higher temperatures and dry conditions, as well as good end-use quality.”

CIMMYT’s partners in AIP include the National Rural Support Program (NRSP), the Lok Sanjh Foundation, the Village Friends Organization (VFO), the Aga Khan Rural Support Program (AKRSP), the National Agricultural Research Council (NARC) Wheat Program, the Wheat Research Institute (WRI) Faisalabad and Sakrand centers, AZRI-Umarkot, Kashmala Agro Seed Company, ARI-Quetta, BARDC-Quetta, and Model Farm Services Center, KP.

(Photo: CIMMYT/Ansaar Ahmad)

(Photo: CIMMYT/Ansaar Ahmad)

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver over 3,400 tons of high quality seed to farmers, which was sown on more than 100,300 hectares.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Photo: Atlabtamu/CIMMYT.

Usman Kadir. Photos here and above: CIMMYT/A.Habtamu.

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates FoundationEthiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

Improved wheat helps reduce women’s workload in rural Afghanistan

Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives

by Katelyn Roett, Mike Listman / October 12, 2017

New research shows improved wheat raises the quality of life for men and women across rural communities in Afghanistan.

recent report from Gennovate, a major study about gender and innovation processes in developing country agriculture, found that improved wheat varieties emerged overwhelmingly among the agricultural technologies most favored by both men and women.

In one striking example from Afghanistan, introducing better wheat varieties alone reduced women’s work burden, showing how the uptake of technology – whether seeds or machinery – can improve the quality of life.

“Local varieties are tall and prone to falling, difficult to thresh, and more susceptible to diseases, including smuts and bunts, which requires special cleaning measures, a task normally done by women,” said Rajiv Sharma, a senior wheat scientist at International Maize and Wheat Improvement Center (CIMMYT) and country liaison officer for CIMMYT in Afghanistan. “Such varieties may comprise mixes of several seed types, including seed of weeds. They also give small harvests for which threshing is typically manual, with wooden rollers and animals, picking up sticks, stones, and even animal excrement that greatly complicates cleaning the grain.”

Both women and men spoke favorably about how improved wheat varieties have eased women’s wheat cleaning work.  “Improved seeds can provide clean wheat,” said an 18-year old woman from one of the study’s youth focus groups in Panali, Afghanistan. “Before, we were washing wheat grains and we exposed it to the sun until it dried. Machineries have [also] eased women’s tasks.”

Finally, Sharma noted that bountiful harvests from improved varieties often lead farmers to use mechanical threshing, which further reduces work and ensures cleaner grain for household foods.

Gennovate: A large-scale, qualitative, comparative snapshot

Conceived as a “bottom-up” idea by a small gender research team of CGIAR in 2013, Gennovate involves 11 past and current CGIAR Research Programs. The project collected data from focus groups and interviews involving more than 7,500 rural men and women in 26 countries during 2014-16.

Some 2,500 women and men from 43 rural villages in 8 wheat-producing countries of Africa and Asia participated in community case studies, as part of the CGIAR Research Program on Wheat.

“Across wheat farm settings, both men and women reported a sense of gradual progress,” said Lone Badstue, gender specialist at the CIMMYT and Gennovate project leader. “But women still face huge challenges to access information and resources or have a voice in decision making, even about their own lives.”

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers, who comprise 43 per cent of the farm labor force in developing countries, had the same access to resources as men, agricultural output in 34 developing countries would rise by an estimated average of as high as 4 percent.

“Gender-related restrictions such as limitations on physical mobility or social interactions, as well as reproductive work burden, also constitute key constraints on rural women’s capacity to innovate in agriculture,” Badstue explained.

Gender equity drives innovation

The Gennovate-wheat report identified six “positive outlier communities” where norms are shifting towards more equitable gender relations and helping to foster inclusiveness and agricultural innovation. In those communities, men and women from all economic scales reported significantly higher empowerment and poverty reductions than in the 37 other locations. Greater acceptance of women’s freedom of action, economic activity, and civic and educational participation appears to be a key element.

“In contexts where gender norms are more fluid, new agricultural technologies and practices can become game-changing, increasing economic agency for women and men and rapidly lowering local poverty,” Badstue said.

The contributions and presence of CIMMYT in Afghanistan, which include support for breeding research and training for local scientists, date back several decades. In the last five years, the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL) has used CIMMYT breeding lines to develop and make available to farmers seed of 15 high-yielding, disease resistant wheat varieties.

Read the full report “Gender and Innovation Processes in Wheat-Based Systems” here.

GENNOVATE has been supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation.

 

Farmers in Pakistan benefit from new zinc-enriched high-yielding wheat

Hans-Joachim Braun (left, white shirt), director of the global wheat program at CIMMYT, Maqsood Qamar (center), wheat breeder at Pakistan’s National Agricultural Research Center, Islamabad, and Muhammad Imtiaz (right), CIMMYT wheat improvement specialist and Pakistan country representative, discussing seed production of Zincol. Photo: Kashif Syed/CIMMYT.

By Mike Listman/CIMMYT

ISLAMABAD, Pakistan (June 30, 2017) – Farmers in Pakistan are eagerly adopting a nutrient-enhanced wheat variety offering improved food security, higher incomes, health benefits and a delicious taste.

Known as Zincol and released to farmers in 2016, the variety yields harvests as high as other widely grown wheat varieties, but its grain contains 20 percent more zinc, a critical micronutrient missing in the diets of many poor people in South Asia.

Due to these benefits and its delicious taste, Zincol was one of the top choices among farmers testing 12 new wheat varieties in 2016.

“I would eat twice as many chappatis of Zincol as of other wheat varieties,” said Munib Khan, a farmer in Gujar Khan, Rawalpindi District, Punjab Province, Pakistan, referring to its delicious flavor.

Khan has been growing Zincol since its release. In 2017, he planted a large portion of his wheat fields with the seed, as did members of the Gujar Khan Seed Producer Group to which he belongs.

The group is one of 21 seed producer associations established to grow quality seed of new wheat varieties with assistance from the country’s National Rural Support Program (NRSP) in remote areas of Pakistan. The support program is a key partner in the Pakistan Agricultural Innovation Program (AIP), led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the U.S. Agency for International Development.

“Over the 2016 and 2017 cropping seasons, 400 tons of seed of Zincol has been shared with farmers, seed companies and promotional partners,” said Imtiaz Muhammad, CIMMYT country representative in Pakistan and a wheat improvement specialist.

Crop sensors sharpen nitrogen management for wheat in Pakistan

By Abdul Hamid, Ansaar Ahmed and Imtiaz Hussain/CIMMYT

ISLAMABAD, Pakistan (February 1, 2017) – Pakistani and the International Maize and Wheat Improvement Center (CIMMYT) scientists are working with wheat farmers to test and promote precision agriculture technology that allows the farmers to save money, maintain high yields and reduce the environmentally harmful overuse of nitrogen fertilizer.

Wheat is planted on more than 9 million hectares in Pakistan each year. Of this, 85 percent is grown under irrigation in farming systems that include several crops.

Fast-tracking wheat seed deployment in remote Pakistan regions

By Mike Listman/CIMMYT

ISLAMABAD, Pakistan (November 19,2015)-Nearly 10,000 smallholder farmers in marginal, far-flung areas of Pakistan are harvesting more, eating better, and earning cash from their wheat crops, as a result of a partnership that is working to offer widespread access to improved wheat seed and farming practices.

“The extra grain from the new varieties will be enough for my family for three additional months,” said farmer Khan Said of Swat, Khyber Pakhtunkhwa, Pakistan, as he surveyed his tawny, sun-kissed wheat field. He also hoped the extra straw from his crop would earn him about US $140.

In autumn-2014, participating farmers in 63 moderately-to-highly-food-insecure districts received a 25-kilogram bag of seed of the new varieties—enough to sow a quarter hectare and compare their performance with that of traditional varieties, as well as helping to grow more seed for redistribution. The new varieties are high-yielding and resist wheat rust, a fungal disease whose three forms—stem, leaf, and yellow rust—are found on as much as half of Pakistan’s wheat area and which constitute a rising threat to the crop.

“Our results show a yield advantage of more than 100% in harsh environments for the new varieties and, after just one season, farmers are attesting to significant improvements in their food security and livelihoods,” said Krishna Dev Joshi, CIMMYT wheat improvement specialist who is coordinating the contributions of 27 partners with this aim. “This proves how, with better access to seed of new varieties and technical support, Pakistani farmers can benefit from the latest wheat science and replace older, rust-susceptible varieties.”

According to Joshi, if half of the harvest from the new varieties were saved as seed, this could be sown on at least 30,000 hectares, producing enough additional seed to cover 1 million hectares in the third year with no extra costs, through farmer-to-farmer seed flow networks, and ultimately creating visible impacts in the project area. The follow-up surveys indicated an overwhelming acceptance of new wheat varieties, as over 87% of participating farmers saved their seeds to expand area under the varieties.