Posts Tagged ‘USAID’

Pakistan wheat seed makeover: More productive, resilient varieties for thousands of farmers

Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

Nearly 3,000 smallholder wheat farmers throughout Pakistan will begin to sow seed of newer, high-yielding, disease-resistant wheat varieties and spread the seed among their peers in 2019, through a dynamic initiative that is revitalizing the contribution of science-based innovation for national agriculture.

Some 73 tons of seed of 15 improved wheat varieties recently went out to farmers in the provinces of Baluchistan, Gilgit Baltistan, Khyber Pakhtunkhwa, Punjab and Sindh, as part of the Agricultural Innovation Program (AIP), an initiative led by the International Maize and Wheat Improvement Center (CIMMYT) with funding from the US Agency for International Development (USAID).

“Our main goal is to help farmers replace outdated, disease-susceptible wheat varieties,” said Muhammad Imtiaz, CIMMYT scientist and country representative for Pakistan who leads the AIP. “Studies have shown that some Pakistan farmers grow the same variety for as long as 10 years, meaning they lose out on the superior qualities of newer varieties and their crops may fall victim to virulent, rapidly evolving wheat diseases.”

With support from CIMMYT and partners, participating farmers will not only enjoy as much as 20 percent higher harvests, but have agreed to produce and share surplus seed with neighbors, thus multiplying the new varieties’ reach and benefits, according to Imtiaz.

He said the new seed is part of AIP’s holistic focus on better cropping systems, including training farmers in improved management practices for wheat.

Wheat is Pakistan’s number-one food crop. Farmers there produce over 25 million tons of wheat each year — nearly as much as the entire annual wheat output of Africa or South America.

Annual per capita wheat consumption in Pakistan averages over 120 kilograms, among the highest in the world and providing over 60 percent of Pakistanis’ daily caloric intake.

The seed distributed includes varieties that offer enhanced levels of grain zinc content. The varieties were developed by CIMMYT in partnership with HarvestPlus, a CGIAR research program to study and deliver biofortified foods.

According to a 2011 nutrition survey, 39 percent of children in Pakistan and 48 percent of pregnant women suffer from zinc deficiency, leading to child stunting rates of more than 40 percent and high infant mortality.

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

“I am very excited to be part of Zincol-16 seed distribution, because its rich ingredients of nutrition will have a good impact on the health of my family,” said Munsif Ullah, a farmer from Swabi District, Khyber Pakhtunkhwa province.

Other seed distributed includes that of the Pakistan-13 variety for rainfed areas of Punjab, Shahkar-13 for the mountainous Gilgit-Baltistan, Ehsan-16 for rainfed areas in general, and the Umeed-14 and Zardana varieties for Baluchistan.

All varieties feature improved resistance to wheat rust diseases caused by fungi whose strains are mutating and spreading quickly in South Asia.

CIMMYT and partners are training farmers in quality seed production and setting up demonstration plots in farmers’ fields to create awareness about new varieties and production technologies, as well as collecting data to monitor the varieties’ performance.

They are also promoting resource-conserving practices such as balanced applications of fertilizer based on infrared sensor readings, ridge planting, and zero tillage. These innovations can save water, fertilizer, and land preparation costs, not to mention increasing yields.

“CIMMYT’s main focus in Pakistan is work with national wheat researchers to develop and spread better wheat production systems,” Imtiaz explained. “This includes improved farming practices and wheat lines that offer higher yields, disease resistance, and resilience under higher temperatures and dry conditions, as well as good end-use quality.”

CIMMYT’s partners in AIP include the National Rural Support Program (NRSP), the Lok Sanjh Foundation, the Village Friends Organization (VFO), the Aga Khan Rural Support Program (AKRSP), the National Agricultural Research Council (NARC) Wheat Program, the Wheat Research Institute (WRI) Faisalabad and Sakrand centers, AZRI-Umarkot, Kashmala Agro Seed Company, ARI-Quetta, BARDC-Quetta, and Model Farm Services Center, KP.

(Photo: CIMMYT/Ansaar Ahmad)

(Photo: CIMMYT/Ansaar Ahmad)

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver over 3,400 tons of high quality seed to farmers, which was sown on more than 100,300 hectares.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Photo: Atlabtamu/CIMMYT.

Usman Kadir. Photos here and above: CIMMYT/A.Habtamu.

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates FoundationEthiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

Improved wheat helps reduce women’s workload in rural Afghanistan

Afghan women from wheat farming villages in focus-group interviews as part of Gennovate, a global study on gender and agricultural innovation. Photo: CIMMYT archives

by Katelyn Roett, Mike Listman / October 12, 2017

New research shows improved wheat raises the quality of life for men and women across rural communities in Afghanistan.

recent report from Gennovate, a major study about gender and innovation processes in developing country agriculture, found that improved wheat varieties emerged overwhelmingly among the agricultural technologies most favored by both men and women.

In one striking example from Afghanistan, introducing better wheat varieties alone reduced women’s work burden, showing how the uptake of technology – whether seeds or machinery – can improve the quality of life.

“Local varieties are tall and prone to falling, difficult to thresh, and more susceptible to diseases, including smuts and bunts, which requires special cleaning measures, a task normally done by women,” said Rajiv Sharma, a senior wheat scientist at International Maize and Wheat Improvement Center (CIMMYT) and country liaison officer for CIMMYT in Afghanistan. “Such varieties may comprise mixes of several seed types, including seed of weeds. They also give small harvests for which threshing is typically manual, with wooden rollers and animals, picking up sticks, stones, and even animal excrement that greatly complicates cleaning the grain.”

Both women and men spoke favorably about how improved wheat varieties have eased women’s wheat cleaning work.  “Improved seeds can provide clean wheat,” said an 18-year old woman from one of the study’s youth focus groups in Panali, Afghanistan. “Before, we were washing wheat grains and we exposed it to the sun until it dried. Machineries have [also] eased women’s tasks.”

Finally, Sharma noted that bountiful harvests from improved varieties often lead farmers to use mechanical threshing, which further reduces work and ensures cleaner grain for household foods.

Gennovate: A large-scale, qualitative, comparative snapshot

Conceived as a “bottom-up” idea by a small gender research team of CGIAR in 2013, Gennovate involves 11 past and current CGIAR Research Programs. The project collected data from focus groups and interviews involving more than 7,500 rural men and women in 26 countries during 2014-16.

Some 2,500 women and men from 43 rural villages in 8 wheat-producing countries of Africa and Asia participated in community case studies, as part of the CGIAR Research Program on Wheat.

“Across wheat farm settings, both men and women reported a sense of gradual progress,” said Lone Badstue, gender specialist at the CIMMYT and Gennovate project leader. “But women still face huge challenges to access information and resources or have a voice in decision making, even about their own lives.”

According to estimates of the Food and Agriculture Organization of the United Nations (FAO), if women farmers, who comprise 43 per cent of the farm labor force in developing countries, had the same access to resources as men, agricultural output in 34 developing countries would rise by an estimated average of as high as 4 percent.

“Gender-related restrictions such as limitations on physical mobility or social interactions, as well as reproductive work burden, also constitute key constraints on rural women’s capacity to innovate in agriculture,” Badstue explained.

Gender equity drives innovation

The Gennovate-wheat report identified six “positive outlier communities” where norms are shifting towards more equitable gender relations and helping to foster inclusiveness and agricultural innovation. In those communities, men and women from all economic scales reported significantly higher empowerment and poverty reductions than in the 37 other locations. Greater acceptance of women’s freedom of action, economic activity, and civic and educational participation appears to be a key element.

“In contexts where gender norms are more fluid, new agricultural technologies and practices can become game-changing, increasing economic agency for women and men and rapidly lowering local poverty,” Badstue said.

The contributions and presence of CIMMYT in Afghanistan, which include support for breeding research and training for local scientists, date back several decades. In the last five years, the Agricultural Research Institute of Afghanistan (ARIA) of the country’s Ministry of Agriculture, Irrigation & Livestock (MAIL) has used CIMMYT breeding lines to develop and make available to farmers seed of 15 high-yielding, disease resistant wheat varieties.

Read the full report “Gender and Innovation Processes in Wheat-Based Systems” here.

GENNOVATE has been supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation.

 

Farmers in Pakistan benefit from new zinc-enriched high-yielding wheat

Hans-Joachim Braun (left, white shirt), director of the global wheat program at CIMMYT, Maqsood Qamar (center), wheat breeder at Pakistan’s National Agricultural Research Center, Islamabad, and Muhammad Imtiaz (right), CIMMYT wheat improvement specialist and Pakistan country representative, discussing seed production of Zincol. Photo: Kashif Syed/CIMMYT.

By Mike Listman/CIMMYT

ISLAMABAD, Pakistan (June 30, 2017) – Farmers in Pakistan are eagerly adopting a nutrient-enhanced wheat variety offering improved food security, higher incomes, health benefits and a delicious taste.

Known as Zincol and released to farmers in 2016, the variety yields harvests as high as other widely grown wheat varieties, but its grain contains 20 percent more zinc, a critical micronutrient missing in the diets of many poor people in South Asia.

Due to these benefits and its delicious taste, Zincol was one of the top choices among farmers testing 12 new wheat varieties in 2016.

“I would eat twice as many chappatis of Zincol as of other wheat varieties,” said Munib Khan, a farmer in Gujar Khan, Rawalpindi District, Punjab Province, Pakistan, referring to its delicious flavor.

Khan has been growing Zincol since its release. In 2017, he planted a large portion of his wheat fields with the seed, as did members of the Gujar Khan Seed Producer Group to which he belongs.

The group is one of 21 seed producer associations established to grow quality seed of new wheat varieties with assistance from the country’s National Rural Support Program (NRSP) in remote areas of Pakistan. The support program is a key partner in the Pakistan Agricultural Innovation Program (AIP), led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the U.S. Agency for International Development.

“Over the 2016 and 2017 cropping seasons, 400 tons of seed of Zincol has been shared with farmers, seed companies and promotional partners,” said Imtiaz Muhammad, CIMMYT country representative in Pakistan and a wheat improvement specialist.

Crop sensors sharpen nitrogen management for wheat in Pakistan

By Abdul Hamid, Ansaar Ahmed and Imtiaz Hussain/CIMMYT

ISLAMABAD, Pakistan (February 1, 2017) – Pakistani and the International Maize and Wheat Improvement Center (CIMMYT) scientists are working with wheat farmers to test and promote precision agriculture technology that allows the farmers to save money, maintain high yields and reduce the environmentally harmful overuse of nitrogen fertilizer.

Wheat is planted on more than 9 million hectares in Pakistan each year. Of this, 85 percent is grown under irrigation in farming systems that include several crops.

Fast-tracking wheat seed deployment in remote Pakistan regions

By Mike Listman/CIMMYT

ISLAMABAD, Pakistan (November 19,2015)-Nearly 10,000 smallholder farmers in marginal, far-flung areas of Pakistan are harvesting more, eating better, and earning cash from their wheat crops, as a result of a partnership that is working to offer widespread access to improved wheat seed and farming practices.

“The extra grain from the new varieties will be enough for my family for three additional months,” said farmer Khan Said of Swat, Khyber Pakhtunkhwa, Pakistan, as he surveyed his tawny, sun-kissed wheat field. He also hoped the extra straw from his crop would earn him about US $140.

In autumn-2014, participating farmers in 63 moderately-to-highly-food-insecure districts received a 25-kilogram bag of seed of the new varieties—enough to sow a quarter hectare and compare their performance with that of traditional varieties, as well as helping to grow more seed for redistribution. The new varieties are high-yielding and resist wheat rust, a fungal disease whose three forms—stem, leaf, and yellow rust—are found on as much as half of Pakistan’s wheat area and which constitute a rising threat to the crop.

“Our results show a yield advantage of more than 100% in harsh environments for the new varieties and, after just one season, farmers are attesting to significant improvements in their food security and livelihoods,” said Krishna Dev Joshi, CIMMYT wheat improvement specialist who is coordinating the contributions of 27 partners with this aim. “This proves how, with better access to seed of new varieties and technical support, Pakistani farmers can benefit from the latest wheat science and replace older, rust-susceptible varieties.”

According to Joshi, if half of the harvest from the new varieties were saved as seed, this could be sown on at least 30,000 hectares, producing enough additional seed to cover 1 million hectares in the third year with no extra costs, through farmer-to-farmer seed flow networks, and ultimately creating visible impacts in the project area. The follow-up surveys indicated an overwhelming acceptance of new wheat varieties, as over 87% of participating farmers saved their seeds to expand area under the varieties.

Reflections of a Wheat Trainee: Zaki Afshar, Afghanistan

Zaki Afshar in the field at CIMMYT Afghanistan after the 2015 Basic Wheat Improvement Course

Zaki Afshar in the field at CIMMYT Afghanistan
Photo Courtesy: Zaki Afshar/ CIMMYT

By Katie Lutz/CIMMYT

CIUDAD OBREGON, Mexico (September 10, 2015)- Zaki Afshar grew up in the small city of Puli Khumri in Northern Afghanistan, visiting his father’s seven-hectare (ha) farm every weekend. Growing up in a farming community where the staple crops are wheat and rice, Afshar saw the impact agriculture could have on a community.

“A big part of why I chose agriculture was because I saw how hard the farmers worked and still suffered,” said Afshar. “I wanted to know how I could help them. Why were they not using the advanced technologies I saw available in other parts of the world?”

According to The United States Agency for International Development (USAID), 60 percent of Afghan citizens rely on agriculture to sustain their livelihoods and families. Wheat is the chief crop in Afghanistan, covering 2.5 million ha and providing about 60 percent of daily calorie intake for an average Afghan.

“We have a very basic agriculture system,” explained Afshar. “You will only see machinery used for plowing and trashing, not for sowing or even harvesting.”

Afshar attended Balkh University in Mazari Sharif, receiving a degree in Agricultural Plant Science. He currently works at the CIMMYT Afghanistan office as a project associate as in the Wheat Improvement Program.

Pakistan Wheat Farmers Call for Quality Seed of the Right Varieties

Pakistani farmer (2)

A Pakistani farmer carries seed of a new wheat variety for on-farm testing. Photo: Anju Joshi

By Krishna Dev Joshi, Katie Lutz and Mike Listman/CIMMYT

ISLAMABAD, Pakistan (February 13, 2015)- Lack of access to seed of improved wheat varieties is holding back harvests of smallholder wheat farmers in remote areas of Punjab, Pakistan, a group of farmers told representatives of seed companies, input dealers and research, extension and development organizations, at a workshop last fall in Chakwal, Punjab, Pakistan.

“Ninety-five percent of farmers in Pothwar, a semiarid region of bare and broken terrain, use farm-saved seed of outdated varieties, invariably with limited use of modern agricultural technologies and inputs, resulting in poor crop establishment and low yields,” said Krishna Dev Joshi, CIMMYT wheat improvement specialist based in Pakistan and who helped organize the workshop. “Their yields average only 0.6 tons per hectare, compared to progressive farmers in irrigated areas who harvest ten times that amount.”

Joshi explained that the same three wheat varieties cover 83 percent of the region and have been used for the past 24 years. “One of these, C591, is a variety that was recommended in 1934 and is still grown on about 14 percent of the region’s nearly 0.6 million hectares of wheat area.”