Posts Tagged ‘USDA’

Dave Hodson highlights “major breakthroughs” in rust disease response at the 2020 Borlaug Global Rust Initiative Technical Workshop

By Madeline Dahm

Dave Hodson, principal scientist at the International Maize and Wheat Improvement Center (CIMMYT), examined over a decade of progress from global partners in the battle to detect and respond to global wheat rust diseases at a keynote address at the Borlaug Global Rust Initiative (BGRI) Technical Workshop in early October.

International training participants learning to evaluate stem rust symptoms on wheat. Photo: Petr Kosina/CIMMYT.

Rust response in the 2000s: sounding the alarm

When the first signs of Ug99 – a deadly strain of wheat stem rust – were noticed in Uganda in 1998, farmers and researchers did not understand the full threat of this disease, or where it would travel next. After Nobel Prize-winning breeder Norman Borlaug sounded the alarm to world leaders, the BGRI was formed and stakeholders from around the world came together to discuss this quickly growing problem. They realized that first, they must develop effective monitoring and surveillance systems to track the pathogen.

Starting in 2008, the initial vision for the global rust monitoring system was developed and the first steps taken to build the global rust surveillance community. Expanding surveillance networks requires a strong database, increased capacity development and well-established national focal points. With standardized surveillance protocols, training and GPS units distributed to over 29 countries, data began to flow more efficiently into the system. This, combined with a preliminary study of the influence of wind and rainfall patterns, improved scientists’ ability to predict areas of higher risk. Furthermore, the group knew that it would be key to integrate race analysis data, expand access to information and eventually expand the system to include other rusts as well.

“Fast forward to today, and we’re now looking at one of the world’s largest international crop disease monitoring systems. We have over 39,000 geo-referenced survey records from >40 countries in the database now, and 9500+ rust isolate records,” said Hodson.

Implementation  of the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects – predecessors to Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG)  – and other key projects advanced this surveillance system, providing early warnings of potential rust epidemics to scientists and farmers.

An important part of this success comes from the Global Rust Reference Center in Denmark, where scientists have put together a state-of-the-art data management system, known as the “Wheat Rust Toolbox,”; providing a flexible centralized database,  rapid data input from mobile devices, data export and a suite of database-driven display tools. The system is flexible enough to handle multiple crops and multiple diseases, including all three wheat rusts.  

A united front

Another critical element to this surveillance system is a global network of rust pathotyping labs around the world. 

“We currently have good surveillance coverage across the world, especially the developing country wheat-growing areas,” says Hodson. “Coupling sampling from that survey network to these labs have enabled us to track the pathogen.”

This is particularly important in the face of a rapidly mutating pathogen. Not only are new variants of Ug99 appearing and spreading, but also other important new races of stem rust are being detected and spreading in places as far-flung as Sicily, Sweden, Siberia, Ecuador, Ethiopia and Georgia. In many regions, we are seeing a re-emergence of stem rust as a disease of concern.

“We now know there are 14 races of Ug99 confirmed across 13 countries. We have seen increased virulence of the pathogen, it  is mutating and migrating, and [has] spread over large distances.”

Furthermore, yellow rust has emerged as a disease of major global importance. The spread of yellow rust and appearance of highly virulent new races seems to be increasing over time. Several regions are now experiencing large-scale outbreaks as a result of the incursion of new races. For example, in South America, causing one of the largest outbreaks in 30 years.

Major breakthroughs in prediction and surveillance

Despite the increased spread and virulence of wheat rusts, the global community of partners has made serious advances in prediction, tracking and treatment of pathogens.

The University of Cambridge and the UK Met Office have developed advanced spore dispersal and epidemiological models for wheat rusts, resulting in a major leap forward in terms of understanding rust movements and providing a foundation for operational, in-season early warning systems. Operational, early warning is already a reality in Ethiopia and similar systems are now being tested in South Asia.

“These models are actually able to predict many of the movements we are now seeing globally,” says Hodson.

“In Ethiopia, information is going out to partners in weekly advisories, as well as targeted SMS alerts using the 8028 farmer hotline developed by the Ethiopian Agricultural Transformation Agency (ATA), with over 4 million subscribers. It makes it possible to get ahead of the disease in key areas–a major breakthrough,” he said, noting plans underway to expand the system to more countries.

In addition, innovative diagnostics such as  the award-winning MARPLE rapid, field-based diagnostic tool developed with the John Innes Centre and Ethiopian Institute of Agricultural Research (EIAR), are transforming the time it takes to detect potentially damaging new races. Resulting in more opportunities for early warning and timely, effective control responses.

The future of wheat research and disease management 

“Clearly, we’re going to need more multidisciplinary approaches to combat these increasing threats from transboundary diseases,” he says, though very optimistic for the future of wheat rust disease forecasting, early warning systems and diagnostics.

Thanks to a “truly fantastic” global community of partners and donors, the global scientific community has built one of the world’s largest crop disease monitoring systems to track and combat aggressive, rapidly spreading wheat rust diseases. Its continued success will depend on embracing state of the art technology – from molecular diagnostics to artificial intelligence – and developing a plan for long-term sustainability.


Researchers in Zambia confirm: Wheat blast has made the intercontinental jump to Africa

Wheat blast in experimental plots (Photo: Batiseba Tembo, ZARI)

Wheat blast, a fast-acting and devastating fungal disease, has been reported for the first time on the African continent, according to a new article published by scientists from the Zambian Agricultural Research Institute (ZARI), the International Maize and Wheat Improvement Center (CIMMYT) and the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS) in the scientific journal PLoS One.

Symptoms of wheat blast first appeared in Zambia during the 2018 rainy season in experimental plots and small-scale farms in the Mpika district, Muchinga province.

Wheat blast poses a serious threat to rain-fed wheat production in Zambia and raises the alarm for surrounding regions and countries on the African continent with similar environmental conditions. Worldwide, 2.5 billion consumers depend on wheat as a staple food, and in recent years, several African countries have been actively working towards reducing dependence on wheat imports.

“This presents yet another challenging biotic constraint to rain-fed wheat production in Zambia,” said Batiseba Tembo, wheat breeder at ZARI and lead scientist on the study.

A difficult diagnosis

“The first occurrence of the disease was very distressing. This happened at the spike stage, and caused significant losses,” said Tembo. “Nothing of this nature has happened before in Zambia.”

Researchers were initially confused when symptoms of the disease in the Mpika fields were first reported. Zambia has unique agro-climatic conditions, particularly in the rainfed wheat production system, and diseases such as spot blotch and Fusarium head blight are common.

“The crop had silvery white spikes and a green canopy, resulting in shriveled grains or no grains at all…Within the span of 7 days, a whole field can be attacked,” said Tembo. Samples were collected and analyzed in the ZARI laboratory, and suspicions grew among researchers that this may be a new disease entirely.

Wheat blast in a farmer’s field in Mpika district, 2020 (Photo: Batiseba Tembo, ZARI)

A history of devastation

Wheat blast, caused by Magnaporthe oryzae pathotype Triticum (MoT), was initially discovered in Brazil in 1985, and within decades had affected around 3 million hectares of wheat in South America alone. The disease made its first intercontinental jump to Asia in 2016, causing a severe outbreak in Bangladesh, reducing yield on average by as much as 51% in the affected fields.

The disease has now become endemic to Bangladesh, and has potential to expand to similar warm, humid and wet environments in nearby India and Pakistan, as well as other regions of favorable disease conditions.

Wheat blast spreads through infected seeds and crop residues as well as by spores that can travel long distances in the air. The spread of blast within Zambia is indicated by both mechanisms of expansion.

Developing expert opinions

Tembo participated in the Basic Wheat Improvement Course at CIMMYT in Mexico, where she discussed the new disease with Pawan Singh, head of Wheat Pathology at CIMMYT.  Singh worked with Tembo to provide guidance and the molecular markers needed for the sample analysis in Zambia, and coordinated the analysis of the wheat disease samples at the USDA-ARS facility in Fort Detrick, Maryland.

All experiments confirmed the presence of Magnaporthe oryzae pathotype Triticum (MoT).

“This is a disaster which needs immediate attention,” said Tembo. “Otherwise, wheat blast has the potential to marginalize the growth of rain-fed wheat production in Zambia and may threaten wheat production in neighboring countries as well.”

Wheat blast observed in Mpika, Zambia  (Photo: Batiseba Tembo, ZARI)

A cause for innovation and collaboration

CIMMYT and the CGIAR Research Program on Wheat (WHEAT) are taking action on several fronts to combat wheat blast. Trainings, such as an international course led by the Bangladesh Wheat and Maize Research Institute (BWMRI) in collaboration with CIMMYT, WHEAT and others, invite international participants to gain new technical skills in blast diagnostics and treatment and understand different strategies being developed to mitigate the wheat blast threat. WHEAT scientists and partners are also working quickly to study genetic factors that increase resistance to the disease and develop early warning systems, among other research interventions. 

“A set of research outcomes, including the development of resistant varieties, identification of effective fungicides, agronomic measures, and new findings in the epidemiology of disease development will be helpful in mitigating wheat blast in Zambia,” said Singh.

Tembo concluded, “It is imperative that the regional and global scientific community join hands to determine effective measures to halt further spread of this worrisome disease in Zambia and beyond.”


Read the study:

Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia

Interview opportunities:

Pawan Kumar Singh, Senior Scientist and Head of Wheat Pathology (CIMMYT)

Batiseba Tembo, Wheat Breeder, Zambian Agricultural Research Institute (ZARI) batemfe@yahoo.com

For more information, or to arrange interviews, contact the media team:

Rodrigo Ordóñez, Communications Manager (CIMMYT) r.ordonez@cgiar.org


Acknowledgements

Financial support for this research was provided by the Zambia Agriculture Research Institute (ZARI), the CGIAR Research Program on Wheat (WHEAT), the Australian Centre for International Agricultural Research (ACIAR), and the US Department of Agriculture’s Agricultural Research Service (USDA-ARS). 

The Basic Wheat Training Program and Wheat Blast Training is made possible by support from investors including ACIAR, WHEAT, the Indian Council of Agricultural Research (ICAR), Krishi Gobeshona Foundation (KGF), the Swedish Research Council (SRC) and the United States Agency for International Development (USAID).

About Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a 5-year project that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.  Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods that improve breeding efficiency and precision to produce and deliver high-yielding varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

About CIMMYT

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit www.cimmyt.org.

International partnership seeking to increase wheat yields finds research hub in “Mecca of wheat”

By Katie Lutz/CIMMYT

CIUDAD OBREGON, Mexico (March 11, 2016)- An agreement formalizing an international partnership to increase wheat yields by 50 percent by 2034 was signed 1 January 2016. The agreement states that after years of planning and collaboration, the International Wheat Yield Partnership (IWYP) research will be hosted at The Norman E. Borlaug Experimental Station (CENEB) in Obregon, Mexico for an indefinite period of time.

Originally announced at The Borlaug Summit in March 2014, IWYP will address issues concerning the widespread demand for wheat.