Posts Tagged ‘wheat rust’

Constantly vigilant: Q&A with rust disease scientist Sridhar Bhavani

Sridhar Bhavani at a UG99 wheat stem rust screening event in Njoro, Kenya. Photo: University of Minnesota, David Hansen

International Maize and Wheat Improvement Center (CIMMYT) Senior Scientist and Head of Rust Pathology and Molecular Genetics Sridhar Bhavani has been fighting the spread of deadly wheat rusts for over 15 years.  He recently presented “A Decade of Stem Rust Phenotyping Network: Opportunities, Challenges and Way Forward” at the Borlaug Global Rust Initiative Technical Workshop in October.

We picked his brain about the growing danger of rust diseases, the newest weapons fighting them, and how researchers both within and outside the CGIAR system can best help wheat smallholder farmers in this seemingly never-ending battle.


Q: It seems like the rust races keep mutating, growing, and spreading and crop breeders and scientists are constantly in a position of reacting. Is this happening faster than in the past or does it just seem that way? Is this a factor of climate change, less diverse modern varieties, something else? Will we ever get ahead of the curve?

A: That’s right. Such events can in part be attributed to climate change. In the case of yellow rust races, we have seen the evolution of new aggressive races that are adapted to warmer temperatures in the last two decades, an unusual acclimatization for this disease. These races initiate early infection and with faster disease progression,  produce large amounts of spores and rapidly evolve to overcome resistant genes. The northern Himalayan region has been identified as a diversity hotspot for these aggressive races, resulting in significant yield losses and global migration of these races.

Interestingly, stem rust races of the Ug99 group have also adapted to cooler environments at altitudes over 3000 meters, which have been identified in the foothills of Mt. Kenya. Recent reports of stem rust variants of the “Digelu” race group, which has resurfaced in the United Kingdom and Europe, is a grave concern considering that the disease was practically under control for over 30 years.

Such diverse, fast-evolving, migrating populations pose a great challenge for breeding programs to continuously scout and deploy new resistant genes. For example, in Mexico, a new race with virulence has evolved every other year over the course of 12 years.

The lack of diversity of resistance genes (genetic uniformity) or combinations of multiple genes in varieties occupying vast production areas (mega varieties) compounds the issue of climate change. This can result in significant yield losses when resistant genes break down.

Different approaches have been used to enhance resistance durability, enabling breeders to stay ahead of the curve:

  • Pyramiding: Combining 2-3 resistance genes in a single variety makes it difficult for pathogens to overcome multiple genes at once.
  • Deploying complex race- non-specific pleotropic adult plant resistance (APR) genes: These genes, such as Sr2, Lr34, Lr46, Lr67 and Lr68, condition partial resistance against multiple diseases (leaf rust, stem rust, yellow rust, powdery mildew, etc.) and are present in CIMMYT germplasm. Combinations of three to four APR genes can enhance resistance to near-immune levels. Though cumbersome, it has been quite effective to keep rust under control over the last two decades.
  • Transgenic cassette approach: It is now possible to transform wheat lines with a cassette of up to eight multiple-cloned resistance genes. This approach stacks multiple resistance genes in the same cultivar and can enhance durability for longer periods. However, current regulatory framework in developed and developing nations doesn’t allow cultivation of transgenic wheat.
Stem rust. Photo: David Hansen, University of Minnesota

Q: What do you think are the areas where the global crop science/agricultural policy community can do better to help smallholder farmers?

A: The community should focus on developing long-term sustainable solutions:

  • Focus on genetic solutions for resource-poor smallholder farmers who lack access to fungicides
  • Eliminate older, susceptible varieties from wheat production areas.
  • Improve rapid dissemination of tools and technologies through on-farm trials and demonstrations, efficient seed systems, strong national extension networks and communities of practice.
  • Enhance national-level emergency preparedness for crop disease. A country’s response time and ability to contain the infected area and mitigate the damage through both immediate and long-term solutions makes a huge difference.
  • Promote policies that fast-track release, multiplication and testing time of improved resistant varieties, which historically takes six to eight years from the time the line is developed.  

Sridhar inspects rust-infected wheat crops. Photo: David Hansen, University of Minnesota

Q: Where do you see your field of research 20 years from now?  Where do you see the global rust situation 20 years from now? What are you concerned about or optimistic about?

A: I am optimistic that recent advances in sequencing-annotated wheat reference genomes and detailed analyses of gene content among sub-genomes will accelerate our understanding of bread wheat genetics. Wheat breeders can now use this information to identify agronomic traits, like grain quality, yield, abiotic stress tolerance and disease resistance.

Furthermore, the global rust monitoring and surveillance network has helped to understand pathogenic diversity in different geographies and possible migration patterns; and develop early forecasts and warning measures in risk-prone areas. These tools enable breeders to stay ahead of the race, and pre-emptive breeding helps them prepare for incursion of new races.

One of my bigger concerns is the “yield is king” mindset in developed countries. High-yielding but rust-susceptible varieties are being promoted with the view that the yield benefit will compensate for the cost of fungicides in disease years. Since this notion is also being promoted in developing countries, a major epidemic–coupled with fungicide supply shortages–can lead to disasters that will seriously impact smallholder farmers.


Q: Do you see the coming reform of CGIAR as having an impact on rust screening and resistance research?  Do you have a message for funders and/or those who are setting the One CGIAR research agenda?

A: Disease and pest resistance for crops, livestock, fisheries and forestry should be high on the agenda. We have witnessed significant impact of pest and pathogen resurgence in the last decade, beyond rust races. The variability and constant evolution of pests puts extreme pressure on breeders and researchers to be constantly vigilant against the emergence of new races, biotypes or strains.

Several threats have been effectively mitigated through global collaboration for surveillance and breeding. This facilitates screening and selection at hot spot sites and accelerates varietal release and adoption. Information-sharing partnerships to detect changes in virulence patterns would greatly reduce the need for fungicide and promote greater stability and sustainability of yield across agricultural environments.

A multidisciplinary approach involving pathologists, breeders, geneticists, physiologists, agronomists, simulation specialists and upstream bioinformaticians at different stages of research and development will be necessary to develop improved cultivars with stable and durable resistance to pests and diseases.

View Sridhar Bhavani’s full BGRI Workshop Presentation, “A Decade of Stem Rust Phenotyping Network: Opportunities, Challenges and Way Forward”


MARPLE: the real-time cereal killer detective

Photo: Matt Heaton/JIC

A new case study by the Biotechnology and Biological Sciences Research Council shines a spotlight on the MARPLE (Mobile and Real-time PLant disEase) Diagnostics kit, a revolutionary technology that can identify fungus strains in just two days.

MARPLE, which was developed by the John Innes Centre in collaboration with the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR), is currently being rolled out across five major research hubs in Ethiopia. As sub-Saharan Africa’s largest wheat producer, Ethiopia is considered “a gateway for new rust pathogen strains entering from Asia”.

Read the case study:

MARPLE: the real-time cereal killer detective

Podcast by Dave Hodson on wheat rusts and human pandemics

CIMMYT Senior Scientist Dave Hodson is a guest on Plantopia, a podcast produced by Cornell University that explains how protecting plant health can ensure a sustainable future. On the “Arms Race Part 1: Ug99” episode, Hodson discusses the striking parallels between wheat rusts and global pandemics in humans, pointing out that in both cases, we’re just one step ahead of the pathogen.

Listen to the podcast here.

Blast and rust forecast

This story by Matthew O’ Leary was originally published on the CIMMYT website.

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Supercharged MARPLE labs to be fastest rust surveillance system in Africa

This article was originally posted on the Alliance for Accelerated Crop Improvement in Africa (ACACIA) website.

A network of Ethiopian researchers across the country are championing a new mobile lab to provide near real-time, strain-level diagnostics during wheat rust outbreaks.

Since winning the international impact category of the BBSRC innovator of the year award the MARPLE (Mobile And Real-time PLant disEase) diagnostic platform is now being established in research hubs across the wheat growing areas of Ethiopia. This marks the next step for the platform after its first trial in country just over a year ago. The UK-Ethiopian partnership hopes to have these platforms fully operational in time for the next growing season in 2020.

“Wheat yellow rust continues to cause huge losses for Ethiopian farmers,” says Diane Saunders whose lab led the creation of MARPLE diagnostics, “finally we have a proven mobile pipeline that gives us information on precisely which strain is present in a farmer’s field in near real-time. This provides the time needed to plan informed defensive responses. Our goal is now to put this technology in the hands of the researcher hubs on the ground.”

Read the full article here.

Scientists develop an early warning system that delivers wheat rust predictions directly to farmer’s phones

New research describes a revolutionary new early warning system that can predict and mitigate wheat rust diseases in Ethiopia.

One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)

Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.

Reported last week in Environmental Research Letters, the new early warning system, which is the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current rust situation and forecast wheat rust up to a week later.

The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).

Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can clearly be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023. However increasing yields has its challenges.

One major challenge to wheat production are wheat rusts. The fungal diseases can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.

The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time – a bit like the flu virus,” explained Dave Hodson, principal scientist CIMMYT and co-author of the research study.

In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, however the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.

The early warning system works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK). This is complemented by crowd sourced phone surveys using ATA’s 8028 Farmers’ Hotline. 

The University of Cambridge and the UK Met office then provide automated 7 day advanced forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.

Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)

Interestingly, the dispersal model was originally developed by the UK Met Office for volcanic eruptions and nuclear accidents to predict where particles would be dispersed in the air. The University of Cambridge and the UK Met Office then adapted the model to predict where wheat rust spores would be dispersed and to provide a 7-day forecast.

 “It’s world-class science from the UK being applied to real world problems,” said Hodson.

All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and the national authorities and the information also gets passed on to researchers and farmers.

“If there’s a high risk of wheat rust developing, farmers will get a targeted alert by SMS sent by ATA. This gives the farmer about three weeks to take action,” explained Hodson. The ATA Farmers’ Hotline now has over four million farmers and extension agents registered, enabling rapid information dissemination throughout Ethiopia.

“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.

Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)

The system puts Ethiopia at the forefront of early warning systems for wheat rust.

“Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson.

At the same time, CIMMYT and partners have been racing to develop wheat rust resistant varieties to allow farmers to avoid the diseases altogether. Recent estimates, based on DNA fingerprinting, indicate that these rust resistant varieties have been widely adopted throughout Ethiopia, and that varietal replacement is occurring frequently. 

The near real-time diagnostics tool MARPLE (Mobile And Real-time PLant disEase diagnostics) is also making huge leaps in wheat rust detection. Strains of yellow rust can be identified in just 48 hours using this suitcase sized kit – a process that normally takes months. The researchers recommended that this new technology be used in conjunction with the Early Warning System, to allow more accurate assessments and predictions of disease spread in Ethiopia.

Read the full article:

https://doi.org/10.1088/1748-9326/ab4034

Read the press release on CIMMYT.org. 

This study was made possible through the support provided by the BBSRC GCRF Foundation Awards for Global Agriculture and Food Systems Research, which brings top class UK science to developing countries, the Delivering Genetic Gains in Wheat (DGGW) Project managed by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID). The Government of Ethiopia also provided direct support into the early warning system.

Q&A with Mandeep Randhawa, CIMMYT wheat rust expert at Njoro Platform, Kenya

Photo Credit: Chris Knight, Cornell University

As a part of a global network to combat the Ug99 race of wheat stem rust, the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Cornell University and the Kenya Agricultural and Livestock Research Organization (KALRO), established a stem rust phenotyping platform in Njoro, Kenya in 2008.

Under the aegis of the Durable Rust Resistance in Wheat (DRRW) project and with support from the Bill & Melinda Gates Foundation, the platform evaluates the resistance of germplasm against Ug99 from 25 to 30 countries around the world.

Mandeep Randhawa — a wheat breeder and geneticist — joined CIMMYT’s Global Wheat Program in 2015 and took responsibility as manager of the Njoro wheat stem rust phenotyping platform in 2017.

In the following Q&A —  based on an interview with Chris Knight of Cornell University’s Borlaug Global Rust Initiative — Mandeep talks about his role and his thoughts on global wheat production and the fight against Ug99.

Q: Could you describe the significance of the work that goes on here to global wheat production and global food security with respect to wheat?

A: CIMMYT has a global mandate to serve developing countries in terms of developing new wheat and maize varieties. Under the CIMMYT-Kenya shuttle breeding program, seed of about 2000 segregated populations are imported and evaluated against stem rust races for two seasons in Njoro, and spikes from resistant plants of each cross are selected, harvested and threshed together. Then, seed from each cross is shipped back to Obregon [the Campo Experimental Norman E. Borlaug in Obregon, Mexico].

In Obregon, CIMMYT selects for resistance against leaf rust and stem rust diseases using the local rust races. Plants are selected in Obregon and about 90,000 to 100,000 plants harvested. After grain selection, 40,000 to 50,000 small plots are grown in other testing sites in Mexico where another round of selections are made. About 10,000 lines undergo first year yield trials in Obregon, and are tested for stem rust resistance here in Kenya for two seasons.

After combining data from the various test sites with the stem rust score from Kenya, the top performing lines (about 10%) undergo second year yield tests in Obregon.

These high-yielding lines are distributed internationally to our national partners, and are available to the public for use in breeding program for release as potential varieties.  

I believe that it is helpful to develop new varieties with higher yield to benefit mankind.

Q: Twenty years have now passed since Ug99 was first identified. One way to frame the story is how high the stakes were at the time. If we didn’t have this screening platform, if we hadn’t come together around trying to fight Ug99, what would have happened to global wheat production?

This is a good question. We have done so much for the last 10 years using this platform. We are developing high-yielding lines that are rust resistant, which are benefiting not only the world’s wheat community, but will eventually benefit the farmer and help raise global wheat production. If we had not acted at the right time, we would not be able to know the effect of these emerging races and how they’re evolving and affecting the world of our wheat. If we didn’t have proper surveillance on rusts, we wouldn’t be able to know what types of stem rust races are evolving.

If we did not have this platform, we would see wheat varieties simply killed by stem rust and we wouldn’t have enough resources to tackle it today.

Now we are at a place where several Ug99-resistant genes have been identified – they are very useful in the breeding programs.

There are two types of resistance. One is race specific resistance and another is race non-specific resistance. If you deploy race specific resistance, there is always the fear that these genes will be rendered ineffective because of the evolution of new races. It has been seen in East Africa with the wheat varieties Robin and Digelu that were rendered susceptible with the emergence of virulent strains of wheat stem rust pathogen. To avoid sudden breakdown of resistance, we at CIMMYT are working to identify, characterize and combine race non-specific type of rust resistance sources. Race non-specific resistance is considered more durable. At least four to five genes need to be combined in one cultivar to have a stronger immunity or resistance.

Q: Let’s talk a little bit about the future. We’ve made a lot of progress, we’ve developed this platform, we brought a community of more than 25 countries together to work on this problem. What do we need to do in the next 20 years?

Stem rust was considered a disease prevalent in warmer environments, but now we can see that races have also evolved in Europe, which means that stem rust is adapting to cooler climates. In the near future, or in the next 20 years, I think we have to continue testing wheat germplasm at this platform to develop high-yielding rust resistant varieties that can be released in different countries, which will be helpful to the global wheat community. And globally speaking, it will be helpful to increase our wheat production.

Q: That’s really exciting. Thinking about the number of wheat lines that are screened here, how many wheat lines are screened here every year, and how many countries do we serve?

When the platform initially formed, my predecessors struggled a lot. It was very hard to plant wheat here. Now we have progressed in the last ten years to reach a level that we can test about 25,000 lines in one season. We have two seasons here in Kenya: one is the off-season starting from January to April/May, and then the main season starts from June and goes to the end of October. During these two seasons, about 50,000 lines per year can be tested at this platform. About 25 to 30 countries are benefitting by testing their germplasm here.

Q: We not only need to cultivate the wheat, we need to cultivate the next generation of scientists. So can you talk about the trainings that are run here on a regular basis? People from all over the world come here to learn about rust pathology and wheat breeding, right?

In the last 10 years, we have been implementing capacity building where young scientists are coming to attend a stem rust training course every year, in September and October. Every year we train about 20 to 30 young scientists from national programs in East Africa, South Asia, the Middle East and South America. Every year Dr. Bob McIntosh — he’s a living legend, an encyclopedia of rust resistance – comes over to Njoro to give field demonstrations, teach new technologies, how we can work together, how you can evaluate rust in the field and in the greenhouse. And in addition, a team of scientists from CIMMYT, ICARDA and Cornell University have been coming to provide lectures on genetics and breeding for rust resistance and rust surveys every year for the last 10 years. We have trained more than 200 scientists.

Q: Do you have a final word of motivation for all of the collaborators around the world who are supporting and helping together to achieve these goals?

We have seen in the last two decades of work here that rust never sleeps, as Dr. Norman Borlaug said. It continues to evolve, and the different races keep on moving around and tend to survive on wheat without any resistance. Not only in east Africa: you can see the stem rust is already in Europe – in Sicily, in Germany and the UK. And there is a risk to South Asia as well, as the wind is blowing toward the bread wheat producing area there. If stem rust reaches there, it can cause a huge loss to global wheat production.

So, I request that countries’ national agriculture research systems contact us: me or Ruth Wanyera, the wheat rust pathologist in KALRO  if they want to test or evaluate their material at this platform. We are more than happy to evaluate the germplasm from any country.

Mandeep can be reached at m.randhawa@cgiar.org