Posts Tagged ‘Wheat’

CIMMYT wheat research recognized for impact through highly-cited papers

Photo: Flickr/Tobias von der Haar

Three scientists working on wheat research with the International Maize and Wheat Improvement Center (CIMMYT) have been recognized as 2020 recipients of the Clarivate™ Highly Cited Researchers list.

The honor recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1 percent by citations for field and year, according to the Web of Science citation indexing service.

Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information™ at Clarivate.

The 2020 CIMMYT honorees include:

  • Julio Huerta: CIMMYT-seconded wheat breeder and rust geneticist with Mexico’s Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)
  • Matthew Reynolds: CIMMYT Distinguished Scientist, wheat physiologist and member, Mexican Academy of Sciences
  • Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement

“I congratulate my colleagues in the Global Wheat Program for this excellent recognition of their important work,” said incoming CIMMYT Global Wheat Program Director Alison Bentley.

Two Highly Cited Researcher certificates

The full 2020 Highly Cited Researchers list and executive summary can be found here.  

An exciting time for wheat research: Incoming director highlights CIMMYT wheat breeding innovations

Alison Bentley, who will be joining the International Maize and Wheat Improvement Center (CIMMYT) next month as director of the Global Wheat Program and the CGIAR Research Program on Wheat, joined wheat research colleagues at the Borlaug Global Rust Initiative Technical Workshop last week to introduce herself and offer her perspective on current prospects for wheat research.

Bentley, who currently serves as director of Genetics and Breeding at the National Institute of Agricultural Botany in the UK, emphasized the efforts of CIMMYT and partner scientists in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project.

“AGG is unique, and it’s something that’s really close to my heart in harnessing innovations and deploying them in breeding to deliver genetic gains,” she said.

Bentley gave workshop attendees a sneak preview of new speed breeding facilities in CIMMYT’s Toluca experimental station, which will help wheat breeders reduce cycle time, saving costs and getting high yielding, improved varieties tested and in farmers’ fields more quickly.

“There has never been a more exciting time to be involved in wheat research and breeding,” she told the gathering.

See Alison Bentley’s full presentation from the BGRI Technical Workshop below.

Tailored targeting needed: new study assesses the impacts of sustainable intensification on farmers in the Indo-Gangetic Plains

By Marcia MacNeil

A farmer at work in a wheat field in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.

Sustainable cropping system intensification – for example, planting legumes in the off season – is a well-documented conservation agriculture (CA) agronomic practice in wheat-rice cropping systems.  While the benefits of this practice for environmentally sustainable production are clear – including providing near-permanent soil cover and improving soil quality while yielding an additional protein-rich crop for consumption or sale – the implications for individual smallholder farmers have been less well examined.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), Wageningen University & Research (WUR) and partner organizations recently studied how rearranging cropping patterns would affect five different types of smallholder farmers in the rural state of Bihar, in the Indo-Gangetic Plains of India.

The results, published in Farm-level exploration of economic and environmental impacts of sustainable intensification of rice-wheat cropping systems in the Eastern Indo-Gangetic plains in the European Journal of Agronomy found that the economic benefits and ease of rearranging cropping systems differ widely by farm type.

The Indo-Gangetic Plains are an important agricultural area for cereal production in India, with rice-wheat cropping systems covering around 10.3 million hectares. However, continuous intensive cultivation of these crops has led to soil degradation and over-use of limited freshwater resources. Farmers in the rural state of Bihar are particularly vulnerable to climate change-related heat, drought and flood risks, and face a growing challenge to maintain their crop productivity while protecting natural resources.

The study authors, including CIMMYT scientists ML Jat and Santiago Lopez-Ridaura, chose 5 Bihar farmer types to evaluate: the Farm Manager, with the largest farm and most family members to provide labor; the Wealthy Farmer, with large land and livestock holdings; the Arable Farmer with no livestock and a mango orchard as a main source of income; the Small Farmer, with less than 1 hectare of land, 3 animals and 4 family members, and the Marginal Farmer with only 1/3 hectare of land, completely cultivated with wheat and rice, and 10 family members.

“Using an optimization model, we measured the trade-offs between the environmental benefits and the profitability of intercropping with mung bean for these different types of farmers,” said Lopez-Ridaura. “We found that these trade-offs can be extensive.”

On the positive side, the study authors found that intercropping with mung bean had allowed all five farmers to save water, increase soil organic matter content and decrease nitrogen losses on their farms.

“The environmental benefits of intercropping are undeniable,” said WUR’s Jeroen Groot, co-author of the study. “However, we found that making the switch to sustainable cropping intensification was not equally financially beneficial for all farm types.”

The Farm Manager and Wealthy Farmer had more options to favorably rearrange their farms, resulting in the best outcome on multiple objectives. The Arable Farmer, Small Farmer and Marginal Farmer showed considerably smaller potential to improve the overall performance of the farm.for m

“In practical terms, our results suggest that policies and programs for sustainable intensification of cereal-based cropping systems in Bihar should use strategies that are targeted by farm type,” said Jat.

“A participatory approach to developing these strategies, including input from farmers, will improve understanding of the challenges and opportunities in targeting investments for sustainable farming practices.”

Read the full article here.

This research was conducted by CIMMYT, Wageningen University & Research, the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research (ICAR).  The research is a product of CIMMYT Academy through a student research project with Wageningen University and supported by the CGIAR Research Programs on Climate Change, Agriculture and Food Security (CCAFS) and Wheat Agri-food Systems (WHEAT); the Indian Council of Agricultural Research (ICAR); and all donors who supported this research through their contributions to the CGIAR Fund.

https://flic.kr/p/2j2kd48

A “track record of delivering local solutions with a global perspective:” Review confirms impact and importance of WHEAT research

https://flic.kr/p/2j2kd48
Wheat trainees and CIMMYT staff examine wheat plants in the field at the experimental station in Toluca, Mexico. Credit: CIMMYT / Alfonso Cortés

The CGIAR Research Program on Wheat (WHEAT) has “a track record of delivering local solutions with a global perspective — and is well positioned to continue this trajectory in the next decade.”

This was a key finding of a recent review of the program aimed to assess WHEAT’s 2017-2019 delivery of quality science and effectiveness, as well as to provide insights and lessons to inform the program’s future.

“Wheat as a crop is bound to be central to global food security in the foreseeable future,” the reviewers stated.

The crop currently contributes 20% of the world population’s calories and protein—and global demand is estimated to increase by 44% between 2005-07 and 2050.

WHEAT — led by the International Maize and Wheat Improvement Center (CIMMYT) with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a key research partner —has two pillars that are essential to meeting this demand: raising potential yield through breeding and closing the yield gap through sustainable intensification at field, farm and landscape scales.

Key recommendations included supporting strategic investment in research partner network development and maintenance, and continuing WHEAT’s trajectory towards modernizing breeding processes and integrating sustainable intensification approaches, including mechanization.

The reviewers warned of challenges for the way ahead, pointing out that partnerships — and WHEAT’s reputation as a reliable partner — are vulnerable to funding volatility. The review also raised concerns about the potential fragmentation of the global breeding program, restrictions to the international exchange of germplasm and ideas, “misguided” emphasis on minor crops, and CGIAR’s “focus on process at the expense of results.”

“This review cuts to the core of what’s so critical—and at risk – not only with our program but wheat research in general,” said Hans Braun, director of the CIMMYT Global Wheat Program and the CGIAR Research Program on Wheat. “Global collaboration and the exchange of improved seeds, data, and especially information.”

“The reviewers rightly point out that limited resources will lead to competition and dampen this collaboration—even between scientists in the same program. We must address this potential risk to improve integration and continue our life saving work.” 

“In most of the developing world, the alliance of public sector and CGIAR wheat breeding programs, as well as some national public breeding programs on their own, will remain dominant providers of wheat varieties, until either functioning seed royalty collection systems are established and/or hybrid wheat becomes a reality,” he added.

WHEAT’s strength is its robust global network of research for development partners and scientists linked to global breeding in a ‘wide adaptation’ approach,” said Victor Kommerell, program manager for the CGIAR Research Programs on Wheat and Maize.

“This review underscores that breaking up the breeding program could cause lasting damage to this network.”

More key findings include:

  • WHEAT is effective and well-managed: In 2017- 2019, WHEAT mainly achieved its planned outputs and outcomes, and in addition achieved unplanned outcomes. For the three years reviewed, WHEAT did not drop any research line.
  • WHEAT’s strength is its partnerships: WHEAT has catalyzed a global network of research and development (R&D) that has delivered and continues to deliver a disproportionate wealth of outputs in relation to investment.
  • WHEAT creates, and thrives on, collaboration: The predominantly public nature of wheat R&D (In the period 1994–2014, the public sector accounted for 63% of global wheat varietal releases and more than 95% of releases in developing countries) favors collaboration, compared with other industries.
  • WHEAT facilitates shared success: The long history of collaboration between CIMMYT, ICARDA and national partners has fostered a sense of belonging to the International Wheat Improvement Network that permits free exchange of information and germplasm, allowing the best varieties to be released, irrespective of origin. International nursery testing delivers elite lines for national program use; data shared by national programs informs WHEAT’s next crossing cycle.

Read more in a 2-page brief summarizing key findings, conclusions and recommendations or on the CGIAR Advisory Services page.

Massive-scale genomic study reveals wheat diversity for crop improvement

A team of scientists has found desirable traits in wheat’s extensive and unexplored diversity.

This press release was originally posted on the website of the International Maize and Wheat Improvement Center (CIMMYT).

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Keith Ewing)

Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study published today in Nature Communications are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally — bread and pasta wheat — and of 27 known wild species.

Wheat is the most widely grown crop globally, with an annual production exceeding 600 million tons. Approximately 95% of the grain produced corresponds to bread wheat and the remaining 5% to durum or pasta wheat.

The main objective of the study was to characterize the genetic diversity of CIMMYT and ICARDA’s internationally available collections, which are considered the largest in the world. The researchers aimed to understand this diversity by mapping genetic variants to identify useful genes for wheat breeding.

From germplasm bank to breadbasket

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.

“The analysis of the bread wheat accessions reveals that relatively little of the diversity available in the landraces has been used in modern breeding, and this offers an opportunity to find untapped valuable variation for the development of new varieties from these landraces”, said Carolina Sansaloni, high-throughput genotyping and sequencing specialist at CIMMYT, who led the research team.

The study also found that the genetic diversity of pasta wheat is better represented in the modern varieties, with the exception of a subgroup of samples from Ethiopia.

The researchers mapped the genomic data obtained from the genotyping of the wheat samples to pinpoint the physical and genetic positions of molecular markers associated with characteristics that are present in both types of wheat and in the crop’s wild relatives.

According to Sansaloni, on average, 72% of the markers obtained are uniquely placed on three molecular reference maps and around half of these are in interesting regions with genes that control specific characteristics of value to breeders, farmers and consumers, such as heat and drought tolerance, yield potential and protein content.

Open access

The data, analysis and visualization tools of the study are freely available to the scientific community for advancing wheat research and breeding worldwide.

“These resources should be useful in gene discovery, cloning, marker development, genomic prediction or selection, marker-assisted selection, genome wide association studies and other applications,” Sansaloni said.


Read the study:

Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints.

Interview opportunities:

Carolina Sansaloni, High-throughput genotyping and sequencing specialist, CIMMYT.

Kevin Pixley, Genetic Resources Program Director, CIMMYT.

For more information, or to arrange interviews, contact the media team:

Ricardo Curiel, Communications Officer, CIMMYT. r.curiel@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

The study was part of the SeeD and MasAgro projects and the CGIAR Research Program on Wheat (WHEAT), with the support of Mexico’s Secretariat of Agriculture and Rural Development (SADER), the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors. Research and analysis was conducted in collaboration with the National Institute of Agricultural Botany (NIAB) and the James Hutton Institute (JHI).

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit www.cimmyt.org.

Publication summary: Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields

A new quantitative genetics study makes a strong case for the yield testing strategies the International Maize and Wheat Improvement Center (CIMMYT) uses in its wheat breeding program.

Wheat fields at CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón. Photo: CIMMYT.

The process for breeding for grain yield in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at an experimental station in the desert environment of Ciudad Obregón, in Mexico’s Yaqui Valley. Because the conditions in Obregón are extremely favorable, CIMMYT wheat breeders are able to replicate growing environments all over the world, and test the yield potential and climate-resilience of wheat varieties for every major global wheat growing area. These replicated test areas in Obregón are known as selection environments (SEs).

This process has its roots in the innovative work of wheat breeder and Nobel Prize winner Norman Borlaug, more than 50 years ago.  Wheat scientists at CIMMYT, led by wheat breeder Philomin Juliana, wanted to see if it remained effective.

The scientists conducted a large quantitative genetics study comparing the grain yield performance of lines in the Obregón SEs with that of lines in target growing sites throughout the world. They based their comparison on data from two major wheat trials: the South Asia Bread Wheat Genomic Prediction Yield Trials in India, Pakistan and Bangladesh initiated by the U.S. Agency for International Development Feed the Future initiative, and the global testing environments of the Elite Spring Wheat Yield Trials.

The findings, published in Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields, in Frontiers in Plant Science, found that the Obregón yield testing process in different SEs is very efficient in developing high-yielding and resilient wheat lines for target sites.

The authors found higher average heritabilities, or trait variations due to genetic differences, for grain yield in the Obregón SEs than in the target sites (44.2 and 92.3% higher for the South Asia and global trials, respectively), indicating greater precision in the SE trials than those in the target sites.   They also observed significant genetic correlations between one or more SEs in Obregón and all five South Asian sites, as well as with the majority (65.1%) of the Elite Spring Wheat Yield Trial sites. Lastly, they found a high ratio of selection response by selecting for grain yield in the SEs of Obregón than directly in the target sites.

“The results of this study make it evident that the rigorous multi-year yield testing in Obregón environments has helped to develop wheat lines that have wide-adaptability across diverse geographical locations and resilience to environmental variations,” said Philomin Juliana, CIMMYT associate scientist and lead author of the article.

“This is particularly important for smallholder farmers in developing countries growing wheat on less than 2 hectares who cannot afford crop losses due to year-to-year environmental changes.”

In addition to these comparisons, the scientists conducted genomic prediction for grain yield in the target sites, based on the performance of the same lines in the SEs of Obregón. They found high year-to-year variations in grain yield predictabilities, highlighting the importance of multi-environment testing across time and space to stave off the environment-induced uncertainties in wheat yields.

“While our results demonstrate the challenges involved in genomic prediction of grain yield in future unknown environments, it also opens up new horizons for further exciting research on designing genomic selection-driven breeding for wheat grain yield,” said Juliana. 

This type of quantitative genetics analysis using multi-year and multi-site grain yield data is one of the first steps to assessing the effectiveness of CIMMYT’s current grain yield testing and making recommendations for improvement—a key objective of the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, which aims to accelerate the breeding progress by optimizing current breeding schemes.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future initiative; and several collaborating national partners who generated the grain yield data.

Read the full article here: https://doi.org/10.3389/fpls.2020.580136

BGRI launches virtual global wheat conference Oct. 7-9

This press release was originally posted on the website of the Borlaug Global Rust Initiative (BGRI).

As the world grapples with a disastrous human health crisis, scientists will gather virtually October 7-9 to discuss strategies to safeguard the health of one of the planet’s most important food sources — wheat.

The Borlaug Global Rust Initiative’s (BGRI) virtual technical workshop will bring together scientists at the forefront of wheat science for cutting-edge training and knowledge sharing. Experts from global institutions such as Cornell University, the International Maize and Wheat Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry Areas (ICARDA), and the John Innes Centre, with presenters from Ethiopia, Kenya, India, Australia, Finland, Mexico, the United Kingdom and United States, will lead in-depth talks and discussions on the most pressing challenges facing global wheat security.

Event registration is now open.

“Right now we are witnessing the devastation that the global spread of disease can cause, and it underscores the continual threat that diseases pose to our most important food crops,” said Ronnie Coffman, vice-chair of the BGRI and an international professor in Cornell’s Department of Global Development and School of Integrative Plant Science. “Devastating wheat epidemics would be catastrophic to human health and wellbeing. October’s workshop is an opportunity for wheat scientists to converge virtually for the practical training and knowledge-sharing we need to fight numerous challenges.”

The three-day workshop in October will be broken up into sessions with keynotes from leading experts and presentations focused on key areas of wheat research:

  • Breeding technologies
  • Disease surveillance
  • Molecular host-pathogen interaction
  • Disease resistance
  • Gene stewardship

The BGRI is a strong proponent of responsible gene deployment to ensure the efficacy of disease resistant genes available to breeders. Since 2012, the BGRI has bestowed the Gene Stewardship Award in recognition of excellence in the development, multiplication and/or release of rust resistant wheat varieties that encourage diversity and complexity of resistance. The winners of the 2020 BGRI Gene Stewardship award will be announced at the workshop.

Maricelis Acevedo, associate director for science for the Delivering Genetic Gain in Wheat (DGGW) project and researcher in Cornell’s Department of Global Development, said: “The BGRI has been at the forefront of developing the next generation of wheat warriors, especially in strengthening the technical and professional skills of women and men scientists from developing countries. We are taking a global approach to help reduce the threat of diseases that can overwhelm farmers’ wheat fields. Issues related to improving world food security, especially in the face of climate change, can only be addressed by a diverse and united global community.”

She added: “The BGRI’s technical workshop has long been the premiere meeting ground for wheat scientists around the world. It’s more important than ever that we come together to address the challenges before us.”

The BGRI 2020 Technical Workshop originally planned for June 1-4 in Norwich, United Kingdom was postponed due to COVID-19.

Wheat is one of the world’s largest primary commodity, with global production of over 700 million tons, grown on over 215 million hectares. Eaten by over 2.5 billion people in 89 countries, wheat provides 19% of the world’s total available calories and 20% of all protein.

Over the past 20 years, the global area under wheat production has not increased. To produce the required amount of wheat needed to feed the world’s growing population, researchers predict wheat yields must increase at least 1.4% per acre through 2030.

Wheat faces pressure from the changing environment and diseases, especially rust diseases increasingly prevalent in wheat-growing regions everywhere. The BGRI was formed in 2005 in response to a novel strain of rust discovered in East Africa known as Ug99 that posed risks of epidemic proportions to global wheat production. Norman Borlaug galvanized global scientists and donors in a bid to combat Ug99 and other disease pressures.

“The world averted disaster thanks to the commitment of researchers and farmers from all over the world who participated in the BGRI’s coordinated global response,” said Coffman. “With the backing of far-sighted donors, the BGRI focused on delivering rust-resilient varieties of wheat to farmers around the world, and dedicating our efforts to small-holder farmers in wheat-producing countries in Africa and Asia — men and women who do not always have access to new technologies and improved seed.” 

Registration page is now live.

The BGRI is a community of hunger fighters dedicated to protecting the world’s wheat. The initiative receives funding through the DGGW project, supported by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office.

##

Alison Bentley to be new CIMMYT Global Wheat Program and WHEAT director

The new director of the CGIAR Research Program on Wheat brings many years of experience in wheat genetics, wheat genetic resources and wheat pre-breeding.

This story by Marta Millere was originally published on the CIMMYT website.

Alison Bentley (right) and Martin Jones of the University of Cambridge inspect wheat in a glasshouse. (Photo: Toby Smith/Gloknos)

In November 2020, Alison Bentley will be joining the International Maize and Wheat Improvement Center (CIMMYT) as the new director of the Global Wheat Program and the CGIAR Research Program on Wheat (WHEAT). She will be succeeding Hans Braun, who has steered CIMMYT’s Global Wheat Program for the last 16 years, and has led the CGIAR Research Program on Wheat since its establishment in 2014.

Bentley expressed that she is thrilled to join CIMMYT and excited about the opportunity to harness science and breeding to improve livelihoods. She believes in a collective vision for equitable food supply and in science-led solutions to deliver impact.

“It really is an exciting time for wheat research: the international community has worked together to produce sequence and genomic resources, new biological and physiological insights, a wealth of germplasm and tools for accelerating breeding. This provides an unparalleled foundation for accelerating genetic gains and connecting ideas to determine how we can practically apply these tools and technologies with partners to deliver value-added outputs,” she said.

Bentley has worked on wheat — wheat genetics, wheat genetic resources and wheat pre-breeding — her entire career. She is the UK’s representative on the International Wheat Initiative Scientific Committee, and is a committee member for the Genetics Society, the UK Plant Sciences Federation, the Society of Experimental Botany, and the Editorial Board of Heredity.

Bentley obtained her PhD from the University of Sydney, Australia, in 2007. She then joined the National Institute of Agricultural Botany (NIAB) in the UK, where she progressed from Senior Research Scientist (2007) to Program Leader for Trait Genetics (2013), and Director of Genetics and Breeding (since 2016).

Currently, Bentley is involved in international research projects in Ethiopia, The Gambia, Ghana, India and Pakistan. She leads a number of UK-India projects with partners including Punjab Agricultural University, the Indian National Institute of Plant Genome Research and the University of Cambridge, studying variation and developing wheat and other cereal germplasm with enhanced resource use efficiency.

CIMMYT and Pakistan: 60 years of collaboration

This story by Mike Listman was originally published on the CIMMYT website.

A wheat field in Pakistan, ready for harvest. Photo: Kashif Syed/CIMMYT

new fact sheet captures the impact of CIMMYT after six decades of maize and wheat research in Pakistan.

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices.

Norman Borlaug, Nobel Peace Prize laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers. CIMMYT’s first training course participant from Pakistan, Manzoor A. Bajwa, introduced the high-yielding wheat variety “Mexi-Pak” from CIMMYT to help address the national food security crisis. Pakistan imported 50 tons of Mexi-Pak seed in 1966, the largest seed purchase of its time, and two years later became the first Asian country to achieve self-sufficiency in wheat, with a national production of 6.7 million tons.

CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)
CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)

In 2019 Pakistan harvested 26 million tons of wheat, which roughly matches its annual consumption of the crop.

In line with Pakistan’s National Food Security Policy and with national partners, CIMMYT contributes to Pakistan’s efforts to intensify maize- and wheat-based cropping in ways that improve food security, raise farmers’ income, and reduce environmental impacts. This has helped Pakistani farmers to figure among South Asia’s leaders in adopting improved maize and wheat varieties, zero tillage for sowing wheat, precision land leveling, and other innovations.

With funding from USAID, since 2013 CIMMYT has coordinated the work of a broad network of partners, both public and private, to boost the productivity and climate resilience of agri-food systems for wheat, maize, and rice, as well as livestock, vegetable, and fruit production.

Download the fact sheet:
CIMMYT and Pakistan: 60 years of collaboration

WHEAT carries on in the “new normal” of COVID-19

A wheat field in Kazakhstan. Photo: V. Ganeyev/CIMMYT

The CGIAR Research Program on Wheat and its lead center, the International Maize and Wheat Improvement Center (CIMMYT), based in Mexico, are responding to the threat of COVID-19 and taking measures to ensure our worldwide staff is as safe as possible.  While we adjust to the “new normal” of social distancing, temperature checks and quarantines, we will continue to perform field and desk research as best we can, and share our progress and findings with you through our website, newsletter, and Facebook page.

At times such as this, we step back and remember the vision that brings us all here: a world free of poverty, hunger and environmental degradation. We would not be able pursue this vision without your support.

We hope you, your colleagues and loved ones stay safe and healthy. We are all in this together and we look forward to continuing our conversation.

Latest COVID-19 news: