Posts Tagged ‘Wheat’

New study confirms the nutritional and health benefits of zinc-biofortified wheat in India

A recent study by India and US scientists shows that when vulnerable young children in India consume foods with wheat-enriched zinc, the number of days they spend sick with pneumonia and vomiting significantly diminishes.

Velu Govindan (CIMMYT) inspects zinc-fortified wheat. Photo: CIMMYT files.

An estimated 26 percent of India’s population lacks adequate micronutrients in their diets. Developed through biofortification — the breeding of crop varieties whose grain features higher levels of micronutrients — high-zinc wheat can help address micronutrient deficiencies.

The results of the study, which took place over six months, confirm zinc-enhanced wheat’s potential to improve the diets and health of disadvantaged groups who consume wheat-based foods, but the authors conclude that longer-term studies are needed.

In partnership with HarvestPlus and partners in South Asia, the International Maize and Wheat Improvement Center (CIMMYT) has bred and fostered the release in the region of six zinc-enhanced varieties that are spreading among farmers and seed producers.

Click here to read the full study.

Available now: The 2017 WHEAT annual report

 

In a highly readable format, the 2017 annual report of the CGIAR Research Program on Wheat presents achievements and an overview of Program finances.

In 2017, national research agencies in 19 countries released 63 new wheat varieties, derived all or in part from the research of CIMMYT and its principal WHEAT partner, the International Center for Agricultural Research in the Dry Areas (ICARDA).

We thank WHEAT’s numerous partners and funders for these and many other exciting achievements. In particular, stable CGIAR Window 1 and 2 funding enables WHEAT to react quickly to urgent needs, as well as to improve program level coordination and learning, ensuring impact. The following countries and organizations are Window 1 funders of CGIAR: Australia, the Bill & Melinda Gates Foundation, Canada, France, India, Japan, Korea, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the World Bank. Funding agencies of Australia, the United Kingdom (DFID), USA (USAID), and China contribute vital Window 2 funding.

To read the full report, please click here.

See also a detailed, technical report on 2017 WHEAT activities, finances and achievements submitted to CGIAR.

2018 Agricultural Innovation Program meeting: CIMMYT and partners’ achievements in Pakistan

Zero till wheat planting in Jaffarabad District.

By Kashif Syed, September 24

More than 70 agricultural professionals met in Islamabad, Pakistan, during September 4-5 to discuss agronomy and wheat activities under the Agricultural Innovation Program (AIP) for Pakistan. The event provided a platform for institutions involved in agronomy and the dissemination of agricultural technology and seed to share advances, discuss issues, and plan future undertakings.

“Crop productivity must be increased through research on innovative crop management techniques, varietal development and dissemination of better techniques and seed to farming communities,” said Dr. Yusuf Zafar, Chairman of PARC, addressing participants and touching upon a key theme of the event. He emphasized that precision agriculture, decision support systems, the use of drones, water productivity improvements and more widespread mechanization were on the horizon for Pakistani farmers, but that this would require active involvement of the public and private sectors.

Developments in zero tillage farming and ridge planting were highlighted in the two-day conference as conservation agriculture practices that are gaining traction in national wheat farming, according to Imtiaz Muhammad, CIMMYT representative and AIP project leader.

“In collaboration with a national network of 23 public and private partners, CIMMYT has reached more than 25,000 farmers through trainings on zero tillage, ridge planting, and direct seeded rice farming,” Imtiaz said, adding that support to farmers included nutrient management education the provision of seed planters. “These techniques are helping farmers to save water, avoid residue burning, and reduce their production costs.”

Collaboration with agricultural machinery manufacturers and other private sector actors is leading to local production of Zero Till Happy Seeders, which sow directly into unplowed fields and the residues of previous crops, according to Imtiaz. “Innovative approaches have also resulted in the production of 1,500 tons of wheat seed in 2018,” he explained.

Wheat seed production and farmers’ replacement of older varieties have progressed through local seed banks established by AIP in partnership with Pakistan’s National Rural Support Program (NRSP). Located in villages, the banks sell quality wheat seed for up to 12 percent less than local markets. “This is critical, because Pakistan’s wheat seed replacement is only 30 percent,” said Imtiaz, adding that there is a 50 percent gap between potential wheat yields and the national average yield for this crop.

The AIP will open more seed banks in remote areas of Pakistan, in conjunction with national partners. As well as producing and processing seed, the banks will provide farm machinery contract services and precision agriculture tools at subsidized rates.

Participants’ recommendations included adding straw spreaders to combine harvesters for rice, to facilitate the direct sowing of wheat after rice. They also suggested that agricultural service providers should help promote the direct seeding of rice and wheat with zero tillage implements. Participants observed that, in Baluchistan Province, support to farmers and service providers could increase the adoption of zero tillage for sowing wheat after rice and of precision land leveling, to improve irrigation efficiency and save water.

The AIP and partners will continue to promote water saving and nutrient management techniques, as well as building the capacity of farmers, national staff and agricultural service providers. Finally, those attending recommended that, for its second phase, AIP focus on the biofortification of wheat and rice, climate smart agriculture, decision support tools, women in farming, knowledge delivery, appropriate mechanization, nutrient management, weed management and water productivity.

AIP is the result of the combined efforts of the Pakistan Agriculture Research Council (PARC), the International Livestock Research Institute (ILRI), the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Rice Research Institute (IRRI), the World Vegetable Center (AVRDC), the University of California at Davis, and the International Maize and Wheat Improvement Center (CIMMYT). It is funded by the United States Agency for International Development (USAID). With these national and international partners on board, AIP continues to improve Pakistan’s agricultural productivity and economy.

Researchers find “hotspot” regions in the wheat genome for high zinc content

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat, according to a report published in Nature Scientific Reports on 10 September.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as 2 wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

The findings promise greatly to ease development of wheat varieties with enhanced levels of zinc, a critical micronutrient lacking in the diets of many poor who depend on wheat-based food, according to Velu Govindan, wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new report.

“A collaboration among research centers in India, Australia, the USA and Mexico, this work will expedite breeding for higher zinc through use of ‘hotspot’ genome regions and molecular markers,” said Govindan. “It also advances efforts to make selection for grain zinc a standard feature of CIMMYT wheat breeding. Because varieties derived from CIMMYT breeding are grown on nearly half the world’s wheat lands, ‘mainstreaming’ high zinc in breeding programs could improve the micronutrient nutrition of millions.”

More than 17 percent of humans, largely across Asia and Africa, lack zinc in their diets, a factor responsible for the deaths of more than 400,000 young children each year.

Often used in human disease research, the genome-wide association approach was applied in this study to zero in on genome segments — known as quantitative trait loci (QTLs) — that carry genes of interest for wheat grain zinc content, according to Govindan.

“The advantages of the genome-wide association method over traditional QTL mapping include better coverage of alleles and the ability to include landraces, elite cultivars, and advanced breeding lines in the analysis,” he explained. “Our study fully opens the door for the expanded use of wheat progenitor species as sources of alleles for high grain zinc, and the outcomes helped us to identify other candidate genes from wheat, barley, Brachypodium grasses, and rice.”
Farmers in South Asia are growing six zinc-enhanced wheat varieties developed using CIMMYT breeding lines and released in recent years according to Ravi Singh, head of the CIMMYT Bread Wheat Improvement Program.

Financial support for this study was provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. It was also supported by CGIAR Funders, through the Research Program on Wheat and the Research Program on Agriculture for Nutrition and Health. Research partners in India and Pakistan greatly contributed to this study by conducting high-quality field trials.

New wheat gene map will speed breeding and help secure grain supplies

In breakthrough science using recent advances in sequencing, the International Wheat Genome Sequencing Consortium presents an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. To read article in Science, click here.

A BBC report on this momentous finding mentions CIMMYT as a leader in work to help meet the food demand of the 9.6 billion people expected to populate the earth by mid-century.

 

Traveling seminar tours Turkey wheat fields

Turkey – In June, about 50 crop scientists gathered in the wheat fields of Turkey. The group, representing no fewer than 11 countries, offered global technical expertise on and insights into wheat as a crop in drylands. Their goal: learn more about improved winter wheat varieties.

Organized by the International Winter Wheat Improvement Program, or IWWIP, the event – traveling seminar and phenotyping exercise – was a scientific roadshow. The delegation of scientists came from far and near, with 27 from Turkey, and the rest from Azerbaijan, China, Iran, Pakistan, Russia, Turkmenistan, South Korea, Spain, and the United Kingdom.

“This is a unique opportunity to share experiences from East to West and discover the latest findings in genotypes,” says Keser Mesut, ICARDA’s senior scientist and country manager based out of Ankara, Turkey. “Having the opportunity to share wheat improvement activities is extremely important. It helps us understand that our needs are shaped by similar challenges posed by climate change.”

IWWIP is a joint program between the Turkish Ministry of Food, Agriculture, and Livestock, the International Maize and Wheat Improvement Center, widely known as CIMMYT, and ICARDA.

Established in the mid-1980s by Turkey and CIMMYT to breed winter wheat, the IWWIP alliance has expanded over the years with ICARDA joining in 1991. The aim is to develop winter and facultative wheat germplasm for North Africa, Central, and West Asia, and facilitate their exchange.

Click here to read more…

Call for action on wheat blast threat in South Asia

This blast-infected wheat spike contains no grain, only chaff. Photo: CIMMYT files

By Gideon Kruseman and Mike Listman

A spatial mapping and ex ante study regarding the risk and potential spread in South Asia of wheat blast, a mysterious and deadly disease from the Americas that unexpectedly infected wheat in southwestern Bangladesh in 2016, identified 7 million hectares of wheat cropping areas in Bangladesh, India, and Pakistan whose agro-climatic conditions resemble those of the Bangladesh outbreak zone.

The study shows that, under a conservative scenario of 5-10% wheat blast production damage in a single season in those areas, wheat grain losses would amount to from 0.89 to 1.77 million tons, worth between $180 and $350 million. This would strain the region’s already fragile food security and force up wheat imports and prices, according to Khondoker Abdul Mottaleb, first author of the study.

“Climate change and related changes in weather patterns, together with continuing globalization, expose wheat crops to increased risks from pathogens that are sometimes transported over long distances,” said Mottaleb.

Foresight research at the International Maize and Wheat Improvement Center (CIMMYT) has focused on new diseases and pests that have emerged or spread in recent decades, threatening global food safety and security. For wheat these include Ug99 and other new strains of stem rust, the movement of stripe rust into new areas, and the sudden appearance in Bangladesh of wheat blast, which had previously been limited to South America.

“As early as 2011, CIMMYT researchers had warned that wheat blast could spread to new areas, including South Asia,” said Kai Sonder, who manages CIMMYT’s geographic information systems lab and was a co-author on the current study, referring to a 2011 note published by the American Pathological Society. “Now that forecast has come true.”

CIMMYT has played a pivotal role in global efforts to study and control blast, with funding from the Australian Center for International Agricultural Research (ACIAR), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agriculture Research (ICAR), and the United States Agency for International Development (USAID).

This has included the release by Bangladesh of the first blast resistant, biofortified wheat variety in 2017, using a CIMMYT wheat line, and numerous training events on blast for South Asia researchers.

Click here to read the article in PLOS-One: “Threat of wheat blast to South Asia’s food security: An ex-ante analysis.

 

 

 

Wheat blast screening and surveillance training in Bangladesh

Photo: CIMMYT/Tim Krupnik

Fourteen young wheat researchers from South Asia recently attended a screening and surveillance course to address wheat blast, the mysterious and deadly disease whose surprise 2016 outbreak in southwestern Bangladesh devastated that region’s wheat crop, diminished farmers’ food security and livelihoods, and augured blast’s inexorable spread in South Asia.

Held from 24 February to 4 March 2018 at the Regional Agricultural Research Station (RARS), Jessore, as part of that facility’s precision phenotyping platform to develop resistant wheat varieties, the course emphasized hands-on practice for crucial and challenging aspects of disease control and resistance breeding, including scoring infections on plants and achieving optimal development of the disease on experimental wheat plots.

Cutting-edge approaches tested for the first time in South Asia included use of smartphone-attachable field microscopes together with artificial intelligence processing of images, allowing researchers identify blast lesions not visible to the naked eye.

“A disease like wheat blast, which respects no borders, can only be addressed through international collaboration and strengthening South Asia’s human and institutional capacities,” said Hans-Joachim Braun, director of the global wheat program of the International Maize and Wheat Improvement Center (CIMMYT), addressing participants and guests at the course opening ceremony. “Stable funding from CGIAR enabled CIMMYT and partners to react quickly to the 2016 outbreak, screening breeding lines in Bolivia and working with USDA-ARS, Fort Detrick, USA to identify resistance sources, resulting in the rapid release in 2017 of BARI Gom 33, Bangladesh’s first-ever blast resistant and zinc enriched wheat variety.”

Cooler and dryer weather during the 2017-18 wheat season has limited the incidence and severity of blast on Bangladesh’s latest wheat crop, but the disease remains a major threat for the country and its neighbors, according to P.K. Malaker, Chief Scientific Officer, Wheat Research Centre (WRC) of the Bangladesh Agricultural Research Institute (BARI).

“We need to raise awareness of the danger and the need for effective management, through training courses, workshops, and mass media campaigns,” said Malaker, speaking during the course.

The course was organized by CIMMYT, a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, with support from the Australian Center for International Agricultural Research (ACIAR), Indian Council of Agricultural Research (ICAR), CGIAR Research Program on Wheat (WHEAT), the United States Agency for International Development (USAID), and the Bangladesh Wheat and Maize Research Institute (BWMRI).

Speaking at the closing ceremony, N.C.D. Barma, WRC Director, thanked the participants and the management team and distributed certificates. “The training was very effective. BMWRI and CIMMYT have to work together to mitigate the threat of wheat blast in Bangladesh.”

Other participants included Jose Mauricio Fernandes, EMBRAPA-Passo Fundo, Brazil; Pawan Singh, CIMMYT wheat pathologist; T.P. Tiwari, Timothy J. Krupnik, and D.B. Pandit, CIMMYT-Bangladesh; Bahadur Mia, Bangladesh Agricultural University (BAU); and scientists from BMWRI and BARI, the Nepal Agricultural Research Council NARC, and Assam Agricultural University (AAU), India.

Farmers, environment, and carbon markets to profit from more precise fertilizer management, study shows

A wheat farm family from the Yaqui Valley, northwestern Mexico. Photo: CIMMYT/Peter Lowe

EL BATÁN, MEXICO – 24 APRIL 2018–Farmers of irrigated wheat can increase profits and radically reduce greenhouse gas emissions by applying fertilizer in more precise dosages, according to a new study.

Published today in the journal Agriculture, Ecosystems and Environment, the study shows that farmers in the Yaqui Valley, a major breadbasket region in northwestern Mexico that covers over 1.5 times the area of the Mexico City, are applying significantly more nitrogen fertilizer than they need to maximize wheat yields.

Lower application of nitrogen fertilizer would cut the region’s yearly emissions of nitrous oxide, a potent greenhouse gas, by the equivalent of as much as 130,000 tons of carbon dioxide, equal to the emissions of 14 million gallons of gasoline, according to Neville Millar, a senior researcher at Michigan State University (MSU) and first author of the published paper.

“Our study is the first to isolate the effect of multiple nitrogen fertilizer rates on nitrous oxide emissions in wheat in the tropics or sub-tropics,” Millar said. “It shows that applying fertilizer to wheat at higher than optimal economic rates results in an exponential increase in nitrous oxide emissions.”

Yaqui Valley wheat farming conditions and practices are similar to those of huge wheat cropping expanses in China, India, and Pakistan, which together account for roughly half of worldwide nitrogen fertilizer use for wheat, according to study co-author Iván Ortíz-Monasterio, a wheat agronomist at the International Maize and Wheat Improvement Center (CIMMYT), whose Yaqui Valley experiment station was the site of the reported research.

“The recommendations are thus globally relevant and represent a potential triple win, in the form of reduced greenhouse gas emissions, higher income for farmers and continued high productivity for wheat cropping,” Ortíz-Monasterio said.

Measuring nitrous oxide after nitrogen fertilizer applications in spring durum wheat crops during two growing seasons, Millar and an international team of scientists found an exponential increase in emissions from plots fertilized at greater than economically-optimal rates—that is, when the extra nitrogen applied no longer boosts grain yield.

They also found that grain quality at the economically optimal N rates was not impacted and exceeded that required by local farmer associations for sale to the market. They examined five different nitrogen fertilizer dosages ranging from 0 to 280 kilograms per hectare.

“In our study, the highest dosage to get optimum wheat yields was 145 kilograms of nitrogen fertilizer per hectare in the 2014 crop,” said Millar. “Yaqui Valley farmers typically apply around 300 kilograms. The wheat crop takes up and uses only about a third of that nitrogen; the remainder may be lost to the atmosphere as gases, including nitrous oxide, and to groundwater as nitrate.”

Promoting profitable, climate-friendly fertilizer use

Farmers’ excessive use of fertilizer is driven largely by risk aversion and economic concerns, according to Ortíz-Monasterio. “Because crops in high-yielding years will require more nitrogen than in low-yielding years, farmers tend to be optimistic and fertilize for high-yielding years,” said Ortíz-Monasterio. “At the same time, since farmers don’t have data about available nitrogen in their fields, they tend to over-apply fertilizer because this is less costly than growing a crop that lacks the nitrogen to develop and yield near to full potential.”

Ortíz-Monasterio and his partners have been studying and promoting management practices to help farmers to use fertilizer more efficiently and take into account available soil nitrogen and weather. This technology, including Greenseeker, a handheld device that assesses plant nitrogen needs, was tested in a separate study for its ability to advise farmers on optimal rates of fertilizer use.

“Sensing devices similar to Greenseeker but mounted on drones are providing recommendations to Yaqui Valley farmers for wheat crops grown on more than 1,000 acres in 2017 and 2018,” Ortiz-Monasterio notes.

Part of a research partnership between CIMMYT and MSU’s W.K. Kellogg Biological Station (KBS) Long-Term Ecological Research program to reduce greenhouse gas impacts of intensive farming, a key aim of the present study was to generate new emission factors for Mexican grain crops that accurately reflect nitrous oxide emissions and emission reductions and can be used in global carbon markets, according to Millar.

“The emission calculations from our work can be incorporated by carbon market organizations into carbon market protocols, to help compensate farmers for reducing their fertilizer use,” he said.

“This study shows that low emissions nitrogen management is possible in tropical cereal crop systems and provides important guidance on the optimal levels for large cropping areas of the world,” said Lini Wollenberg, an expert in low-emissions agriculture for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which helped fund the research. “With these improved emission factors, countries will be able to better plan and implement their commitments to reducing emissions.

To view the article

Millar, N., A. Urrea, K. Kahmark, I. Shcherbak, G. P. Robertson, and I. Ortiz-Monasterio. 2018. Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agriculture, Ecosystems and Environment, https://doi.org/10.1016/j.agee.2018.04.003.

KBS LTER
Michigan State University’s Kellogg Biological Station Long-term Ecological Research (KBS LTER) Program studies the ecology of intensive field crop ecosystems as part of a national network of LTER sites established by the National Science Foundation. More information at https://lter.kbs.msu.edu

MSU AgBioResearch
MSU AgBioResearch engages in innovative, leading-edge research that combines scientific expertise with practical experience to help advance FOOD, ENERGY and the ENVIRONMENT. It encompasses the work of more than 300 scientists in seven MSU colleges — Agriculture and Natural Resources, Arts and Letters, Communication Arts and Sciences, Engineering, Natural Science, Social Science and Veterinary Medicine — and includes a network of 13 outlying research centers across Michigan.

CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit www.cimmyt.org.

CCAFS
The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), led by the International Center for Tropical Agriculture (CIAT), brings together some of the world’s best researchers in agricultural science, development research, climate science and earth system science to identify and address the most important interactions, synergies and tradeoffs between climate change, agriculture and food security. CCAFS is carried out with support from CGIAR Fund Donors and through bilateral funding agreements. www.ccafs.cgiar.org

Bearish headlines overstate the extent of available global wheat stocks, analysts say

By Mike Listman

MEXICO CITY, 5 April 2018–Declining area sown to wheat worldwide, together with stockpiling by China, is masking significant risk in global wheat markets, experts at the United Kingdom’s Agriculture and Horticulture Development Board (AHDB) caution.

“Less area sown means a higher dependence on yield to meet demand and thus a greater reliance on good weather, which is out of our control,” said Amandeep Kaur Purewal, a Senior Analyst in AHDB’s Market Intelligence Cereals and Oilseeds team, speaking in a recent interview with the International Maize and Wheat Improvement Center (CIMMYT).

“If there is a production issue—say, drought or a serious pest or disease outbreak in a key wheat growing country—then wheat stocks may not be as accessible as recent, bearish headlines suggest,” Kaur Purewal added. “Bear in mind that the world’s number-one wheat producer, China, is not exporting surplus wheat at the moment, so China’s wheat won’t really be available for the markets.”

Established in 2008 and funded by farmers , growers and others in the supply chain, AHDB provides independent information to improve decisions and performance in UK agriculture.

In “Global wheat: The risks behind the records,” a report published by AHDB in February 2018, Kaur Purewal and colleagues suggest that, despite an unprecedented run of surplus global wheat production in the last four years, there is a relatively small cushion for large-scale importers to fall back upon, if imports become harder to obtain.

“Likely linked to China’s efforts to become self-sufficient in wheat, since 2007/08 the country has increased its stockpile by 225 percent, giving it a 64 percent share of the 138 million ton increase in global wheat stocks over this period,” Kaur Purewal observed. “This and the recent, huge global harvests for maize have saturated grain markets and pressured prices, driving the price of wheat futures to historic lows.”

According to the AHDB report, prices for wheat futures have been relatively stable, but if yields fall and production declines, greater price volatility may return.

“It’s important to remain aware of the market forces and read the news,” she said, “but in the case of the wheat stocks-to-use ratio, which measures how much stock is left after demand has been accounted for, the headlines may not be providing a true reflection.”

Hans-Joachim Braun, director of CIMMYT’s global wheat program, called the AHDB report an “eye opener.”

“This resonates with the cautionary message of the landmark 2015 study by Lloyd’s of London, which showed that the global food system is actually under significant pressure from potential, coinciding shocks, such as bad weather combined with crop disease outbreaks,” Braun said.

“Price spikes in basic food staples sorely affect the poor, who spend much of their income simply to eat each day,” Braun added. “CIMMYT and its partners cannot let up in our mission to develop and share high-yielding and nutritious maize and wheat varieties, supported by climate-smart farming practices. In an uncertain world, these help foster resilience and stability for food systems and consumers.”